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Abstract
Variational inference is a method for approximating posterior distributions in latent
variable models. This technique has enabled the use of Bayesian methodology
in settings where it would otherwise be infeasible, yet problems remain. The
optimization suffers from sensitivity to initialization and prefers underdispersed
distributions. We remedy this by deriving an alternate optimization algorithm for
variational inference based on proximal expansions of the variational objective with
additional constraints. We derive a scalable variant that runs as fast as variational
inference. In our experiments, we design an entropy constraint and show that our
approach is less sensitive to initialization. We test the method in a Bernoulli factor
model and a sigmoid belief net model of images trained on MNIST. In the sigmoid
belief net, our model recovers good posterior predictive distributions where standard
variational inference fails.

1 Introduction

Variational inference (Jordan et al., 1999) is an optimization-based inference method that tries to find
the distribution in a family that is the closest in Kullback-Leibler (kl) divergence to the posterior.
Despite the increase in the applicability of variational inference, problems remain. This method
can suffer from bad local optima partially caused by the independence assumptions made by the
posterior (Theis and Hoffman, 2015; Shah et al., 2015). Another issue occurs during optimization.
After the variational approximation has removed support from a particular neighborhood, it is very
hard for it to grow back (MacKay, 2003; Burda et al., 2016). The latter issue stems from the form
of the kl divergence, where the constraint that p dominates q has unbounded weight. Variational
inference cannot recover from bad initializations. These two problems lead to our central challenge:
given a poor initialization, are there variational inference algorithms that avoid poor local optima?
Can we design fast algorithms that avoid taking bad steps during variational inference?

We present proximity variational inference (pvi), a technique for variational inference derived from
changing the proximity function used in gradient ascent of the evidence lower bound (elbo). Gradient
ascent of an objective function is equivalent to minimizing the first-order Taylor expansion of the
objective, subject to a proximity constraint (Spall, 2003; Boyd and Vandenberghe, 2004). Our approach
builds on this, by adding additional constraints meaningful to variational methods. An example is a
constraint is based on entropy. In this case, each step taken must have a similar entropy to the previous
step. We demonstrate the value of this constraint in a Bernoulli factor model and sigmoid belief
network model of images. Adding the entropy constraint reduces the effects of poor initialization of
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the algorithm. The additional entropy change constraint on each update counters the local pathologies
induced by the kl divergence.

Related work. kl proximal variational inference is a method for optimizing the elbo subject
to a proximal term that forces the approximate posterior to remain close on each gradient update
(Khan et al., 2015). Theis and Hoffman (2015) also propose a trust-region update that constrains the
variational parameters using the kl during optimization. These soft constraints are equivalent to our
proposed method with a kl constraint; we allow for constraints beyond kl. Bregman divergences
are used in convex optimization (Nocedal and Wright, 2006). Our method extends beyond this to
nonconvex constraints such as the squared distance of the entropy, which works well in practice.

2 Variational Inference

Consider a model of datax with latent variables z: p.x; z/. The true posterior isp.zjx/. In variational
inference, the goal is minimize the kl divergence to the posterior. This is equivalent to maximizing a
lower bound L on the evidence to arrive at a good approximate posterior distribution q.zI�/. The
variational family q is indexed by parameters � which we optimize to maximize the lower bound
(Wainwright and Jordan, 2008; Hoffman et al., 2013). The elbo is

L.�/ D EqŒlogp.x; z/� � EqŒlog q.�/�: (1)

The first term in this objective is the expected log-likelihood; it encourages configurations of the latent
variables that maximize the likelihood of the data. The second term is the entropy of the variational
distribution; it favors entropic configurations of latent variables.

3 Proximity Variational Inference

Gradient optimization of the elbo corresponds to repeatedly optimizing a first-order Taylor approxi-
mation of the elbo subject to a Euclidean proximity constraint. By altering the definition of proximity,
we develop proximity variational inference. The new proximity constraints restrict the updates of
variational parameters. We enable the practitioner to design constraints to guide the parameters away
from poor local optima. These updates are efficient to compute when Taylor expanded. This inference
technique is flexible as it enables a variety of functional forms for the proximity operator of the
variational update.

Gradient methods with proximity operators. Gradient optimization maximizes the elbo by
repeatedly following gradients of the elbo. This iterative procedure corresponds to repeatedly maxi-
mizing the linearized elbo subject to a proximity constraint on the current variational parameter (Spall,
2003). Formally, let �t be the variational parameters and � be a constant. Then consider the update
equation for �tC1:

U.�tC1/ D L.�t /CrL.�t /
>.�tC1 � �t / � 1

2�
.�tC1 � �t /

>.�tC1 � �t /:

This update equation for �tC1 is the linearized elbo around �t subject to �tC1 being close in squared
Euclidean distance to �t . Finding the �tC1 which maximizes U yields

�tC1 D �t C �rL.�t /: (2)

This is equivalent to gradient ascent. This Euclidean distance-based proximity for variational in-
ference suffers many pathologies. For example, consider a Gaussian distribution with mean zero
and variance 0:01. A small change measured by Euclidean distance in the mean drastically changes
where the Gaussian distribution places its support. Furthermore, the Euclidean constraint fails to
prevent pathologies such as making a rapid changes in the approximation due to poor initialization.
We propose enriching this class of proximity constraints based on any function f of the variational
parameters. Let d be a differentiable distance function. We define the proximity update equation for
the variational parameters �tC1 to be

U.�tC1/ D L.�t /CrL.�t /
>.�tC1 � �t / � 1

2�
.�tC1 � �t /

>.�tC1 � �t / � kd.f .�t /; f .�tC1//:

(3)
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(a) Variational lower bounds on evidence
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(b) Norm of distance from truth

Figure 1: Plots of (a) the evidence lower bound and (b) normed distance from the correct cluster
means for a Bernoulli spike-and-slab factor model (Section 4). The data is synthetic where the true
means are known. The x-axis represents the perturbation added to the initialization of the cluster
means. Initialized close to the truth, variational inference and proximity variational inference succeed.
But for bad initializations, only proximity variational inference recovers the correct solutions.

This update enforces that the variational distribution be close in the statistic f . As a concrete example
consider a constraint built from the entropy; if the entropy is not analytic we can estimate it using
Monte Carlo. Informally, the entropy of a distribution measures the amount of randomness present in
that distribution. High entropy distributions look more uniform across their support, while low entropy
distributions are peaky. Formally, the entropy H.�/ equals �EqŒlog q�. Adding this constraint to
Equation 3 as f .�/ D H.�/ constraints all updates to have entropy close to their previous update. When
the variational distributions are initialized with large entropy, this type of constraint is designed to
balance the strong tendency toward underdispersed solutions exhibited by variational inference. This
is an issue in variational inference especially if the parameters have been initialized poorly.

The update in Equation 3 rarely has a closed form solution and requires a gradient-based optimization
procedure. This procedure works by perturbing the current value of �t to initialize �tC1, followed by
gradient optimization of U . Convergence can be monitored by looking at the sign of U . When it is
positive, the linearization dominates the other terms in the update equation.

Linearizing the proximity function. Equation (3) with constraints can avoid pathologies in vari-
ational inference, but it requires an internal optimization loop to compute each parameter. This is
computationally burdensome. When a closed-form solution to Equation 3 is unavailable, we can use
the first-order Taylor expansion of the proximity function. Letting rd be the gradient with respect to
the second argument of the distance function and c be the first argument to the distance, we compute
this expansion around �t (the variational parameters at step t ):

U.�tC1/ D L.�t /CrL.�t /
>.�tC1 � �t / � 1

2�
.�tC1 � �t /

>.�tC1 � �t /

� k.d.c; f .�t //Crd.c; f .�t //rf .�t /
>.�tC1 � �t //:

This linearization has closed-form update for �tC1:

�tC1 D �t C �.rL.�t / � k.rd.c; f .�t //rf .�t //: (4)

If the constant c is set to be the value of the proximity function at the current iterate f .�t /, the added
proximity has no effect. Distance functions are minimized at zero so their derivative is zero there.
This means c must be set to something else. We choose the m-step lagged value of the proximity
function f .�t�m/.1 This imposes a constraint on how much the optimization can change the property
f of the variational distribution over m iterations, in contrast to the standard update in Equation 2.
The update in Equation (4) has the form of standard gradient ascent. It implies a global objective
which varies over time:

Lproximity.�tC1/ D EqŒlogp.x; z/� � EqŒlog q.�tC1/� � kd.f .�t�m/; f .�tC1//: (5)

As d is a distance, this remains a lower bound on the evidence, but new variational approximations
1Technically, the maximum of t �m and 1.
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remain close in f to previous iterations’ distributions. The complexity of this algorithm is similar to
standard variational inference: proximity variational inference corresponds to the elbo subject to the
distance constraint in f . The added complexity comes from storing values of f and computing the
derivative of f ; no inner optimization loop is required. The magnitude k of the constraint may need
to be annealed during training.

4 Experimental Results
Bernoulli spike-and-slab model. We evaluate a Bernoulli spike-and-slab factor model. This model
has a Bernoulli prior on zik and a Gaussian likelihood xi � Normal.� DP

k zik�k ; �
2 D 1/. To

study bad initialization, we set p D 0:01 as the initial value of the prior. We test on synthetic data
in 100 dimensions—poor initializations have much greater effects in high dimensions. The variational
parameters are initialized with Gaussian noise centered at the correct mean plus a perturbation �
which we vary, with variance one. We optimize the objectives, Equations (1) and (5), using the
RMSProp optimizer (Tieleman and Hinton, 2012) with a learning rate of 0:5. We use a five-step
lagged value of the entropy, with a constraint strength of k D 1012. We anneal the constraint strength
using the following schedule: kt D kt�1.1 � t

T
/2, where t is the current iteration, T is the total

iterations, and ktD0 is the initial value. This ensures the constraint decays fast enough, and was the
only annealing schedule we tried. Convergence is assessed by monitoring the change in the objective
and thresholding the tolerance at 10�10. In Figure 1 we show that proximity variational inference
recovers the correct solution even for very bad parameter initializations, very far from the correct
cluster means. Without annealing of the constraint, we found that pvi still recovers correct cluster
means but that the lower bound is worse.
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Figure 2: Poorly-initialized sigmoid belief net trained on MNIST. Left: training elbo for the first
2 � 105 iterations. Right: samples from the posterior predictive distribution. Original MNIST digits
are in the middle (b); samples for pvi and variational inference are on the top (a) and bottom (c)
respectively. Proximity variational inference with the entropy constraint achieves a worse elbo than
standard variational inference. The posterior predictive samples show that the pvi constraint recovers
better reconstructions of the data.

Sigmoid belief net on MNIST. We demonstrate that our method scales to large data on a common
benchmark for discrete latent variables, namely the sigmoid belief net trained on binarized MNIST
(Mnih and Rezende, 2016). We perturb the model parameters of a sigmoid belief net with three
layers of 200 latent variables as follows. The weights and biases chosen to be poorly initialized, using
Gaussian noise centered at �100 with standard deviation 0:01. We use the Adam optimizer (Kingma
and Ba, 2014) with learning rate 0:001 and parameters ˇ1 D 0:9; ˇ2 D 0:999 and train for 3 � 106

iterations. For the control variate in (Mnih and Rezende, 2016), we take 5 samples. We use 1000
samples for estimating the elbo. We set the prior Bernoulli parameter to 0:001, and train the model
using both variational inference and proximity variational inference with the entropy constraint. For
the entropy constraint, we use a magnitude of k D 1010 and lag of 100 steps. We anneal the constraint
with an exponential decay of 0:96, meaning the constraint magnitude is annealed to 0 at the end
of training; this was the only schedule we tested. The elbo was �210:0 nats and �284:8 nats for
variational inference and pvi respectively. This large difference between the two methods could resolve
after more iterations—the constraint magnitude k reached 0 only at the end of training. In Figure 2,
we displaying samples from the posterior predictive distributions for random datapoints. While the
bound for pvi is worse, it is still able to recover good reconstructions of the data. Without annealing
the constraint, samples from the posterior predictive look worse but still resemble digits.
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