Reinforced Variational Inference

Theophane Weber Google DeepMind

(joint work with: Nicolas Heess, Ali Eslami, John Schulman, David Wingate, David Silver)

This talk

- Variational Inference: powerful method for leveraging optimization techniques in inference problems
- Reinforcement Learning: powerful framework for sequential decision making under uncertainty
- We formalize mapping from variational inference to reinforcement learning
 - Unifies many concepts in variational inference from a graphical standpoint
 - Derive new methods by leveraging known RL ideas
 - Derive intuition about when variational inference is hard

Previous work

Control as inference: a rich field

- Dayan and Hinton, Using Expectation-Maximization for Reinforcement Learning (1997)
- Furmston and Barber, Variational Methods for Reinforcement Learning (2010)
- Botvinick and Toussaint, Planning as probabilistic inference (2012)
- Rawlik et al. On Stochastic Optimal Control and Reinforcement Learning by Approx. Inference (2012)

Inference as RL is more recent, and less developed:

- Wingate A Reinforcement Learning approach to Variational Inference (2012)
- Mnih and Gregor, Neural Variational Inference (2014)
- Bachman, Precup, Data Generation as Sequential Decision Making (2015)
- Schulman, Heess, W., Abbeel, *Gradient estimation using Stochastic Computation Graph* (NIPS15)

Modern Variational Inference

Variational inference was recently revolutionized by two key ideas:

 Turnkey: 'Automated' / 'black-box' inference by general purpose Monte Carlo estimates of the cost function gradient.

 Faster and scalable: Amortized inference (data-conditional fast inference schemes), minibatches in VI ('SVI')

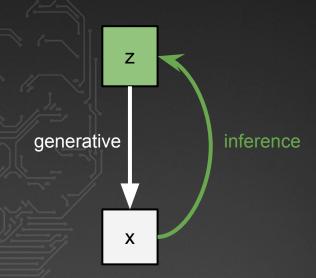
Variational Inference

Objective function

$$\mathcal{L}(heta) = \int_{z} q_{ heta}(z|x) \log p(x|z) - KL(q_{ heta}(z|x), p(z))$$

Stochastic gradient estimate (score function method)

$$abla_{ heta} \mathcal{L}(heta) = \mathbb{E}\left[
abla_{ heta} \log q_{ heta}(z|x) \log\left(rac{p(z,x)}{q_{ heta}(z|x)}
ight)
ight]$$



Variational Inference

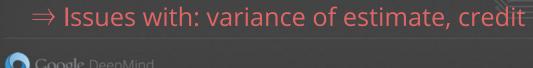
Objective function

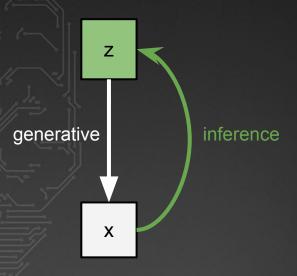
$$\mathcal{L}(heta) = \int_{z} q_{ heta}(z|x) \log p(x|z) - KL(q_{ heta}(z|x), p(z))$$

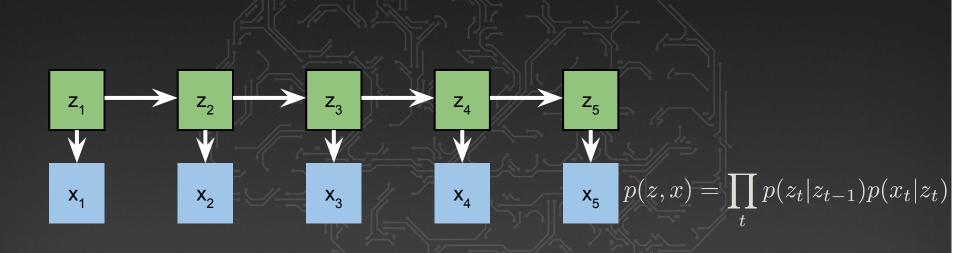
Stochastic gradient estimate (score function method)

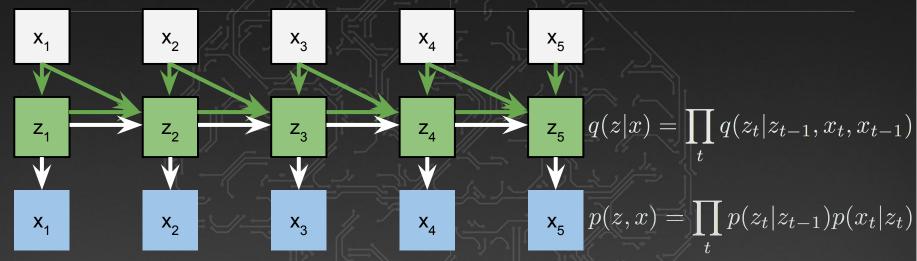
$$abla_{ heta} \mathcal{L}(heta) = \mathbb{E}\left[
abla_{ heta} \log q_{ heta}(z|x) \log\left(rac{p(z,x)}{q_{ heta}(z|x)}
ight)
ight]$$

⇒ Issues with: variance of estimate, credit assignment

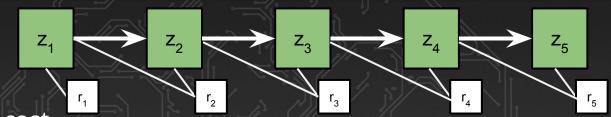








$$\mathcal{L} = \mathbb{E}\left[\sum_{t} \log p(z_{t}|z_{t-1}) + \log p(x_{t}|z_{t}) - \log q(z_{t}|x_{t}, x_{t-1}, z_{t-1})\right]$$

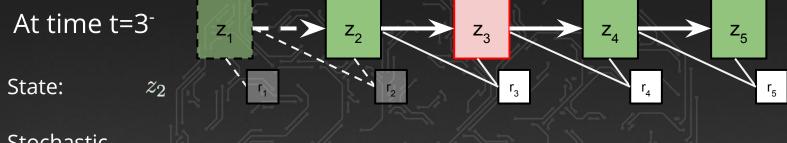


Decomposing the cost

$$\mathcal{L} = \mathbb{E}\left[\sum_{t} \log p(z_t|z_{t-1}) + \log p(x_t|z_t) - \log q(z_t|x_t, x_{t-1}, z_{t-1})
ight]$$

$$\mathcal{L} = \mathbb{E} \left| \sum_t r_t
ight|$$

$$r_t = \log p(z_t|z_{t-1}) + \log p(x_t|z_t) - \log q(z_t|x_t, x_{t-1}, z_{t-1})$$

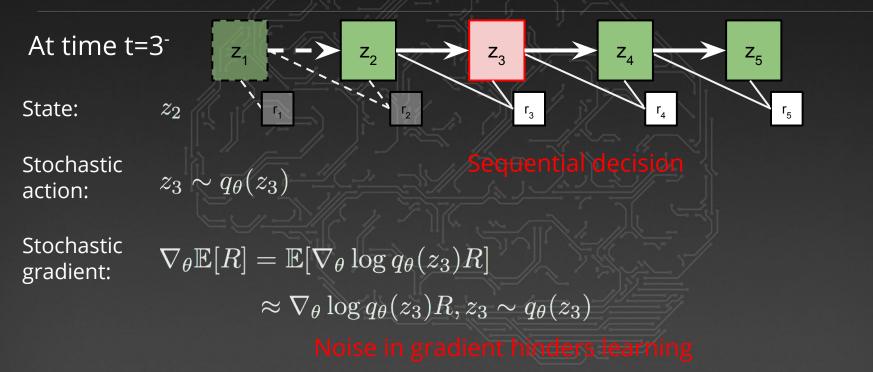


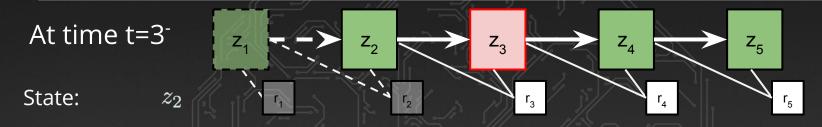
Stochastic action:

$$z_3 \sim q_{ heta}(z_3)$$

$$\nabla_{\theta} \mathbb{E}[R] = \mathbb{E}[\nabla_{\theta} \log q_{\theta}(z_3)R]$$

$$\approx \nabla_{\theta} \log q_{\theta}(z_3)R, z_3 \sim q_{\theta}(z_3)$$





Stochastic action:

$$z_3 \sim q_{ heta}(z_3)$$

Stochastic gradient: $abla_{ heta}\mathbb{E}[R] = \mathbb{E}[
abla_{ heta}\log q_{ heta}(z_3)R]$

$$\approx \nabla_{\theta} \log q_{\theta}(z_3) R, z_3 \sim q_{\theta}(z_3)$$

Noise in gradient hinders learning

RL deals with sequential decision making, and has developed techniques in variance reduction

At time t=3
$$z_1$$
 z_2 z_3 z_4 z_5 z_5 $\nabla_{\theta}\mathbb{E}[R] \approx \sum_{t} \nabla_{\theta} \log q_{\theta}(z_t) R_t$ with $R_t = r_t + r_{t+1} + ... + r_T$

$$pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_t) (R_t - b)$$
 since $\mathbb{E}[
abla_{ heta} \log q_{ heta}(z_t)] = 0$

Appropriate value of b reduces variance - what value to use?

$$b^* = rac{\mathbb{E}[
abla \log q_{ heta}^2 \overline{R_t}]}{\mathbb{E}[
abla \log q_{ heta}^2]}$$

At time t=3⁻
$$z_1$$
 z_2 z_3 z_4 z_5 z_5

$$egin{aligned}
abla_{ heta} \mathbb{E}[R] &pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_{t}) R \ &pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_{t}) R_{t} \quad ext{with} \quad R_{t} = r_{t} + r_{t+1} + \ldots + r_{T} \ &pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_{t}) (R_{t} - b) \quad ext{since} \quad \mathbb{E}[
abla_{ heta} \log q_{ heta}(z_{t})] = 0 \end{aligned}$$

Appropriate value of b reduces variance - what value to use?

$$b^* = rac{\mathbb{E}[
abla \log q_{ heta}^2 R_t]}{\mathbb{E}[
abla \log q_{ heta}^2]}$$

perhaps not ideal

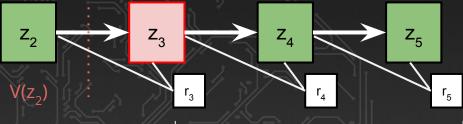
- > multidimensional
- > low intuition

At time t=3
$$z_1$$
 z_2 z_3 z_4 z_5 z_5 z_6 z_6 z_6 z_7 z_8 z_8

Appropriate value of b reduces variance - what value to use?

$$b = \mathbb{E}[R_t]$$

At time t=3



$$egin{aligned}
abla_{ heta} \mathbb{E}[R] &pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_{t}) R \ &pprox \sum_{t}
abla_{ heta} \log q_{ heta}(z_{t}) R_{t} \end{aligned}$$

$$pprox \sum_{t}^{t}
abla_{ heta} \log q_{ heta}(z_t) R_t \quad ext{ with } \quad R_t = r_t + r_{t+1} + ... + r_T$$

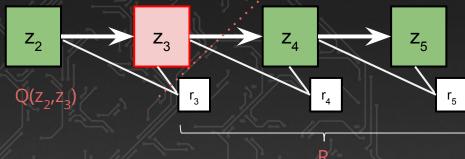
$$pprox \sum
abla_{ heta} \log q_{ heta}(z_t)(R_t-b)$$
 since $\mathbb{E}[
abla_{ heta} \log q_{ heta}(z_t)]=0$

Appropriate value of b reduces variance - what value to use? Can use state-conditional value function!

$$b = V(z_{t-1}) = \mathbb{E}[R_t | z_{t-1}]$$

A second idea: critics

At time t=3



$$abla_{ heta}\mathbb{E}[R]pprox \sum_t
abla_{ heta} \log q_{ heta}(z_t)(R_t-V(z_{t-1}))$$

Can further reduce variance by replacing return by its expectation over future choices

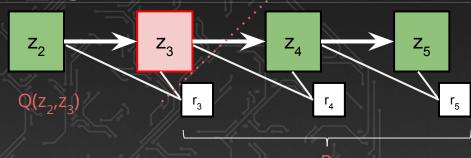
$$\mathbb{E}[\nabla_{\theta} \log q_{\theta}(z_t) R_t] = \mathbb{E}_{z_t}[\nabla_{\theta} \log q_{\theta}(z_t) \mathbb{E}_{z_{>t}}[R_t]] \qquad \text{ define: } Q(z_{t-1}, z_t) = \mathbb{E}_{z_{>t}}[R_t]$$

$$abla_{ heta}\mathbb{E}[R] pprox \sum
abla_{ heta} \log q_{ heta}(z_t) (Q(z_{t-1}, z_t) - V(z_{t-1}))$$

critic

A third idea: advantage functions

At time t=3



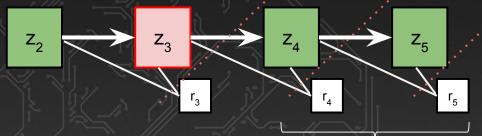
$$abla_{ heta} \mathbb{E}[R] pprox \sum_t
abla_{ heta} \log q_{ heta}(z_t) (R_t - V(z_{t-1}))$$

Can further reduce variance by replacing return by its expectation over future choices

$$\mathbb{E}[\nabla_{\theta} \log q_{\theta}(z_t) R_t] = \mathbb{E}_{z_t}[\nabla_{\theta} \log q_{\theta}(z_t) \mathbb{E}_{z_{>t}}[R_t]]$$

$$abla_{ heta}\mathbb{E}[R]pprox \sum_{t}
abla_{ heta}\log q_{ heta}(z_{t})A(z_{t-1},z_{t})$$

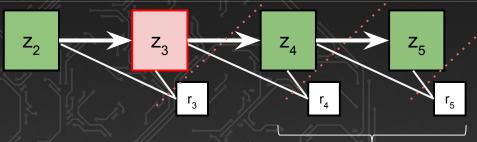
At time t=3



 $Q(z_3,z_4) \sim R_4$

$$Q(z_2,z_3)-V(z_2)$$

At time t=3

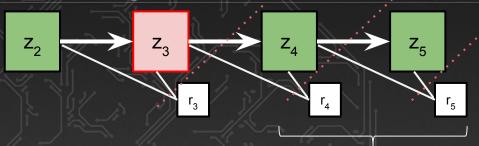


 $Q(z_3,z_4) \sim R_4$

$$Q(z_2,z_3)-V(z_2)\\$$

$$r_3 + Q(z_3,z_4) - V(z_2)$$

At time t=3



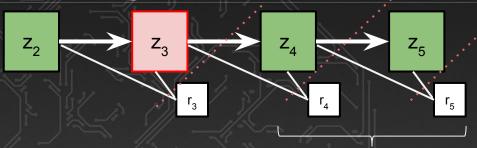
 $Q(z_3, z_4) \sim R_4$

$$Q(z_2,z_3)-V(z_2)\\$$

$$r_3 + Q(z_3,z_4) - V(z_2)$$

$$r_3 + r_4 + Q(z_4, z_5) - V(z_2)$$

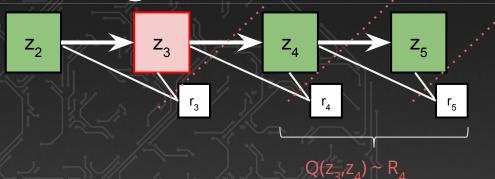
At time t=3



 $Q(z_3, z_4) \sim R_4$

$$egin{aligned} Q(z_2,z_3) - V(z_2) \ r_3 + Q(z_3,z_4) - V(z_2) \ r_3 + r_4 + Q(z_4,z_5) - V(z_2) \ r_3 + r_4 + r_5 - V(z_2) \end{aligned}$$

At time t=3

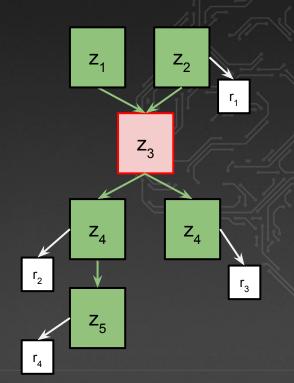


Advantage estimates:

$$egin{aligned} Q(z_2,z_3) - V(z_2) \ r_3 + Q(z_3,z_4) - V(z_2) \ r_3 + r_4 + Q(z_4,z_5) - V(z_2) \ r_3 + r_4 + r_5 - V(z_2) \end{aligned}$$

can be combined

Arbitrary graphs (stochastic computation graph)



State: (z₁,z₂)

Downstream costs: $R_3 = r_2 + r_3 + r_4$

Value function: $V(z_1,z_2)=\mathbb{E}[R_3|z_1,z_2]$

Critic: $Q(z_1,z_2,z_3)=\mathbb{E}[R_3|z_1,z_2,z_3]$

Stochastic gradient estimate:

$$abla_{ heta} \log q_{ heta}(z_3)(Q(z_1,z_2,z_3)-V(z_1,z_2))$$

The high level general mapping

Generic expectation		RL		VI	
Optimization var.	θ	Policy param.	θ	Variational param.	θ
Integration var.	y	Trajectory	τ	Latent trace	\overline{z}
Distribution	$p_{\theta}(y)$	Trajectory dist.	$p_{\theta}(au)$	Posterior dist.	$q_{ heta}(z x)$
Integrand	f(y)	Total return	R(au)	Free energy	$\log \left(\frac{p(x,z)}{q_{\theta}(z x)} \right)$

Conceptual mapping

Variational Inference:

Reinforcement learning

Expected total cost

Open-loop control

Closed-loop control

Trajectory optimization Context-based control

Rewards

Returns

Log partition function Free-energies Rao-blackwellized free energies Mean-field posterior

Structured posterior
Per data point inference

Amortized inference

Baselines

???

???

???

???

???

Experience replay

Critics

Your favorite RL technique

Value function

TD-learning

Exploration

???

Conceptual mapping

Variational Inference: Reinforcement learning Log partition function Expected total cost Free-energies Rewards Rao-blackwellized free energies Returns Mean-field posterior Open-loop control Structured posterior Closed-loop control Per data point inference Trajectory optimization Context-based control Amortized inference Baselines Value function Critics ??? TD-learning ??? **Exploration** so much to explore! Experience replay ??? ??? Your favorite RL technique

Sequential mapping

	RL	VIMDP
Context	 -	x
Dynamic state	s_t	z_{k-1}
State	s_t	(z_{k-1},x)
Action	a_t	$z_k \sim q_\theta(z_k z_{k-1},x)$
Transition	$(s_t, a_t) \to s_{t+1} \sim P(s s_t, a_t)$	$((z_{k-1}, x), z_k) \to (z_k, x)$
Instant reward	r_t	$\log\left(\frac{p(z_k z_{k-1},x)}{q_{\theta}(z_k z_{k-1},x)}\right)$
Final reward	0	$\log p(x z_K)$

