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This talk

● Variational Inference: powerful method for leveraging optimization 
techniques in inference problems 

● Reinforcement Learning:  powerful framework for sequential decision 
making under uncertainty

● We formalize mapping from variational inference to reinforcement 
learning
○ Unifies many concepts in variational inference from a graphical standpoint
○ Derive new methods  by leveraging known RL ideas
○ Derive intuition about when variational inference is hard



Previous work

Control as inference: a rich field

● Dayan and Hinton, Using Expectation-Maximization for Reinforcement Learning (1997)
● Furmston and Barber, Variational Methods for Reinforcement Learning (2010)
● Botvinick and Toussaint, Planning as probabilistic inference (2012)
● Rawlik et al. On Stochastic Optimal Control and Reinforcement Learning by Approx. Inference (2012)

Inference as RL is more recent, and less developed:

● Wingate A Reinforcement Learning approach to Variational Inference (2012)
● Mnih and Gregor, Neural Variational Inference  (2014)
● Bachman, Precup, Data Generation as Sequential Decision Making (2015)
● Schulman, Heess, W., Abbeel, Gradient estimation using Stochastic Computation Graph (NIPS15)



Modern Variational Inference
Variational inference was recently revolutionized by two key ideas:

● Turnkey: ‘Automated’ / ‘black-box’ inference by general purpose Monte 
Carlo estimates of the cost function gradient.

● Faster and scalable: Amortized inference (data-conditional fast inference 
schemes), minibatches in VI (‘SVI’)
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⇒ Issues with: variance of estimate, credit assignment
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An example: time series with inference network

z2 z3
At time t=3-

Stochastic 
action:

Sequential decision

State: 

Stochastic 
gradient:

RL deals with 
sequential 
decision making, 
and has 
developed 
techniques in 
variance 
reduction
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At time t=3-

with

since

z4 z5z2 z3

r3 r4 r5

Appropriate value of b reduces variance - what value to use? 
Can use state-conditional value function! 

R3

V(z2)

A first idea: Value functions



A second idea: critics
At time t=3- z4 z5z2 z3
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Can further reduce variance by replacing return by its expectation over future choices
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A third idea: advantage functions
At time t=3- z4 z5z2 z3
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A fourth idea: TD learning
At time t=3- z4 z5z2 z3

r3 r4 r5

Q(z3,z4) ~ R4Advantage estimates:

can be combined



Arbitrary graphs (stochastic computation graph)
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The high level general mapping



Conceptual mapping

Reinforcement learning

Expected total cost
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so much to explore!



Sequential mapping


