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Review: Variational Inference

Goal: Fit a distribution to the posterior with optimization

Model:
Model: p(x , z)

Latent Variables: z

Data: x

Variational Inference:
Approximating Family: q(z ;λ)

Minimize KL(q||p(z | x)) or maximize ELBO:

L(λ) = Eq[log p(x , z)− log q(z ;λ)]
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Problem: Local Optima

ELBO for mixture model of two Gaussians
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Annealing

We show the variational objective for temperatures (left to right)
T = 20, T = 13, T = 8.5 and T = 1.
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Annealing

Annealing slowly reduces temperature while optimizing the T-ELBO.
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Why only anneal the likelihood?

Modern variational inference methods subsample data
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Why only anneal the likelihood?

What happens when we anneal the prior and subsample data?

Consider Latent Dirichlet Allocation:
The prior on the topics is Dirichlet with parameter α = η

The annealed prior is Dirichlet with parameter α = η
T

Given a batch of documents the update for the topics is

λt+1 = (1 − ρt)λt + ρt

(
α+

D

B

∑
d

ϕdwWdn

)
.

When a topic is not assigned a word it is quickly driven to α

For T = 10 and η = .01, exp(Ψ( η
T )−Ψ(η)) ≈ 10−400

This is the digamma problem or the zero forcing problem.
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Multicanonical Methods

Annealing introduces a temperature sequence T1 to Tt

Results are very sensitive to the temperature schedule

Solution: Make T part of the model

z x

T

Place a multinomial prior on T

Variational update needs Z (T )

This trades a sequence of parameters settings for integral
computation to renormalize.
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Results
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Questions

Is this procedure always better? Adding latent variables can
introduce new optima?
More generally, what are automated model transforms that
preserve model semantics while improving computation?
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Problem: Automation

A lot of variational inference methods are black box, but what
happens if we try to develop them in a programming framework?
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Specifying a Model in Stan
A�������� D�������������� V���������� I��������

xn

✓

˛ D 1:5; � D 1

N

data {
int N; // number of observations
int x[N]; // discrete-valued observations

}
parameters {

// latent variable, must be positive
real<lower=0> theta;

}
model {

// non-conjugate prior for latent variable
theta ~ weibull(1.5, 1);

// likelihood
for (n in 1:N)

x[n] ~ poisson(theta);
}

Figure 1: Specifying a simple nonconjugate probability model in Stan.

variables r✓ log p.X; ✓/. The gradient is valid within the support of the prior

supp.p.✓// D
˚

✓ j ✓ 2 RK and p.✓/ > 0

 

✓ RK
;

where K is the dimension of the latent variable space. This support set is important: it determines
the support of the posterior density and will play an important role later in the paper. Note that we
make no assumptions about conjugacy, either full1 or conditional.2

Consider a model that contains a Poisson likelihood with unknown rate, p.x j ✓/. The observed
variable x is discrete; the latent rate ✓ is continuous and positive. Place a Weibull prior on ✓ , defined
over the positive real numbers. The resulting joint density describes a nonconjugate di�erentiable
probability model. Its partial derivative @=@✓ p.x; ✓/ is valid within the support of the Weibull
distribution, supp.p.✓// D R>0 ⇢ R. Since this model is nonconjugate, the posterior is not a
Weibull distribution. This presents a challenge for classical variational inference. We will see how
���� handles this model later in the paper.

Many machine learning models are di�erentiable probability models. Linear and logistic regres-
sion, matrix factorization with continuous or discrete measurements, linear dynamical systems, and
Gaussian processes are prime examples. In machine learning, we usually describe mixture models,
hidden Markov models, and topic models using discrete random variables. Marginalizing out the
discrete variables reveals that these are also di�erentiable probability models. Fully discrete models,
such as the Ising model, fall outside of this category. See Table 1 for a summary. Another exception
to this class are non-truncated Bayesian nonparametric models, such as the hierarchical Dirichlet
process topic model.

2.2 Variational Inference

In Bayesian inference, we seek the posterior density p.✓ j X/, which describes how the latent vari-
ables vary, conditioned on a dataset of observations X. Many posterior densities are intractable
because their normalizing constants lack analytic (closed-form) solutions. Thus, we seek to approx-
imate the posterior.

Consider an approximating density q.✓ I �/ parameterized by parameters � 2 ˆ. We make no
assumptions about the shape or support of q; likewise, the parameters � live in some arbitrary set

1. The posterior of a fully conjugate model is in the same family as the prior.
2. A conditionally conjugate model has this property within the complete conditionals of the model (?).

3
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Automatic Differentiation Variational Inference (ADVI)

What does it work for? Differentiable models where the posterior
has same support as the prior
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

Kucukelbir, Tran, Ranganath, Gelman and Blei

builds in the necessary transformations to the joint model density.4 This process transforms the joint
density of any differentiable probability model to the real coordinate space. (See Figure 1.)

There are many ways to differentiably transform the support a model to the real coordinate space.
The form of the transformation directly affects the shape of the variational approximation. In Sec-
tion 3.3 we study sensitivity to the choice of transformation. In any case, after this automatic trans-
formation step, we can choose a variational distribution independently from the model.
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Figure 2: Transforming the model to real coordinate space. The purple line is the posterior. The
green line is the approximation. (a) The latent variable space is R>0. (a!b) T transforms the latent
variable space to R. (b) The variational approximation is a Gaussian in real coordinate space.

2.4 Variational Approximations in Real Coordinate Space
After the transformation, the latent variables " have support in the real coordinate space, RK . We
have a choice of variational approximations in this space.
Mean-field Gaussian. One option is to posit a diagonal (mean-field) Gaussian variational approx-
imation

q." I #/ D N
!
" I $; I% 2

"
D

KY
kD1

N
!
!k I "k; #2

k

"
;

where the vector # D ."1; " " " ; "K ; #2
1 ; " " " ; #2

K/ concatenates the mean and variance of each Gaus-
sian factor. Since all variance terms must be positive, the variational parameters live in the set
ˆ D fRK ; RK

>0g.
Choosing a diagonal Gaussian may call to mind the Laplace approximation technique, where a

second-order Taylor expansion around the maximum-a-posteriori estimate gives a Gaussian approxi-
mation to the posterior. However, using a Gaussian variational approximation is not equivalent to the
Laplace approximation (?). Our approach is distinct in another way: the posterior approximation in
the original latent variable space (Figure 2a) is non-Gaussian, because of the inverse transformation
T !1 and its Jacobian.
Full-rank Gaussian. Another option is to posit a full-rank Gaussian variational approximation

q." I #/ D N ." I $; †/;

4. Stan provides various transformations for upper and lower bounds, simplex and ordered vectors, and structured ma-
trices such as covariance matrices and Cholesky factors (?).

6

Posit a factorized normal approximation on this space
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

Automatic Differentiation Variational Inference
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Figure 3: Elliptical standardization. The purple line is the posterior. The green line is the approxi-
mation. (a) The variational approximation is a Gaussian in real coordinate space. (a!b) S! absorbs
the parameters of the Gaussian. (b) We maximize the elbo in the standardized space, with a fixed
standard Gaussian approximation.

Computing Gradients. Since the expectation is no longer dependent on #, we can directly calcuate
its gradient. Push the gradient inside the expectation and apply the chain rule to get

r"L D EN .#/

!
r$ log p.X; $/r%T !1.!/Cr% log

ˇ̌
det JT !1.!/

ˇ̌"
: (8)

We obtain gradients with respect to ! (mean-field) and L (full-rank) in a similar fashion

r!L D EN .#/

h#
r$ log p.X; $/r%T !1.!/Cr% log

ˇ̌
det JT !1.!/

ˇ̌$
">diag.exp.!//

i
C 1 (9)

rLL D EN .#/

h#
r$ log p.X; $/r%T !1.!/Cr% log

ˇ̌
det JT !1.!/

ˇ̌$
">

i
C .L!1/> (10)

(Derivations in Appendix C.)
We can now compute the gradients inside the expectation with automatic differentiation. The

only thing left is the expectation. mc integration provides a simple approximation: draw M samples
from the standard Gaussian and evaluate the empirical mean of the gradients within the expectation
(?). (See Appendix D).

This gives unbiased noisy gradients of the elbo for any differentiable probability model. We
can now use these gradients in a stochastic optimization routine to automate variational inference.
Stochastic Gradient Ascent. Equipped with unbiased noisy gradients of the elbo, advi imple-
ments stochastic gradient ascent (Algorithm 1). This is a simple algorithm that is guaranteed to
converge to a local maximum of the elbo under certain conditions on the step-size sequence.6 ?
established a pair of conditions that ensure convergence: the step-size sequence must decay suffi-
ciently quickly. Many sequences satisfy these criteria, but their specific forms impact the success of
stochastic gradient ascent in practice. We describe an adaptive step-size sequence for advi below.
Adaptive Step-size Sequence. Adaptive step-size sequences retain (infinite) memory about past
gradients and adapt to the high-dimensional curvature of the elbo optimization space (???). These
sequences enjoy theoretical bounds on their convergence rates. However, in practice, they can be slow
to converge. The empirically justified rmsprop sequence (?), which only retains finite memory of
past gradients, converges quickly in practice but lacks any convergence guarantees. We propose a
new step-size sequence which effectively combines both approaches.

6. This is also called a learning rate in the machine learning community.

9
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

Use Monte Carlo estimate reparameterization
gradient to optimize the ELBO

∇λL(λ) = Es(ϵ)[∇z [log p(x , z)]∇λz(ϵ)] +∇λH[q]
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ADVI: Does it work?
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(b) Hierarchical Logistic Regression

Figure 10: Hierarchical Generalized Linear Models.

4.2 Non-negative Matrix Factorization

We continue by exploring two nonconjugate non-negative matrix factorization models: a constrained
Gamma Poisson model (?) and a Dirichlet Exponential Poisson model. Here, we show how easy it
is to explore new models using ����. In both models, we use the Frey Face dataset, which contains
1956 frames (28 ⇥ 20 pixels) of facial expressions extracted from a video sequence.
Constrained Gamma Poisson. This is a Gamma Poisson matrix factorization model with an or-
dering constraint: each row of one of the Gamma matrices goes from small to large values. (Details
in Appendix H.)
Dirichlet Exponential Poisson. This is a nonconjugate Dirichlet Exponential factorization model
with a Poisson likelihood. (Details in Appendix I.)
Results. Figure 11 shows average log predictive accuracy as well as ten factors recovered from both
models. ���� provides an order of magnitude speed improvement over ���� (Figure 11a). ����
struggles with the Dirichlet Exponential model (Figure 11b). In both cases, ��� does not produce
any useful samples within a budget of one hour; we omit ��� from the plots.

The Gamma Poisson model (Figure 11c) appears to pick significant frames out of the dataset.
The Dirichlet Exponential factors (Figure 11d) are sparse and indicate components of the face that
move, such as eyebrows, cheeks, and the mouth.

4.3 Gaussian Mixture Model

This is a nonconjugate Gaussian mixture model (���) applied to color image histograms. We
place a Dirichlet prior on the mixture proportions, a Gaussian prior on the component means, and
a lognormal prior on the standard deviations. (Details in Appendix J.) We explore the image����
dataset, which has 250 000 images (?). We withhold 10 000 images for evaluation.

In Figure 12a we randomly select 1000 images and train a model with 10 mixture components.
���� struggles to find an adequate solution and ��� fails altogether. This is likely due to label
switching, which can a�ect ���-based techniques in mixture models (?).

Figure 12b shows ���� results on the full dataset. Here we use ���� with stochastic subsampling
of minibatches from the dataset (?). We increase the number of mixture components to 30. With a
minibatch size of 500 or larger, ���� reaches high predictive accuracy. Smaller minibatch sizes lead

17
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The Role of Transforms

There exist multiple maps from the constrained to the
unconstrained space.

For example from: R+ → R
T1 : log(x) and T2 : log(exp(x)− 1)K���������, T���, R��������, G����� ��� B���
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Figure 9: ���� approximations to Gamma densities under two di�erent transformations.

4. ���� in Practice

We now apply ���� to an array of nonconjugate probability models. We study hierarchical re-
gression, non-negative matrix factorization, and mixture models. For these models, we compare
mean-field ���� to two ���� sampling algorithms: Hamiltonian Monte Carlo (���) (?) and the
no-U-turn sampler (����)8 (?). We assess ���� convergence by tracking the ����. To place ����
and ���� on a common scale, we report predictive likelihood on held-out data as a function of
time. We approximate the posterior predictive likelihood using a �� estimate. For ����, we plug
in posterior samples. For ����, we draw samples from the posterior approximation during the opti-
mization. We initialize ���� with a draw from a standard Gaussian.

We conclude with a case study: an exploratory analysis of millions of taxi rides. Here we show
how a data scientist might use ���� in practice.

4.1 Hierarchical Regression Models

We begin with two nonconjugate regression models: linear regression with automatic relevance
determination (���) (?) and hierarchical logistic regression (?).

Linear Regression with ���. This is a sparse linear regression model with a hierarchical prior
structure. This model is conditionally conjugate; deriving a variational inference algorithm takes
multiple pages (?). (Details in Appendix F.)

We simulate a dataset with 250 regressors such that half of the regressors have no predictive
power. We use 10 000 data points for training and withhold 1000 for evaluation.

Logistic Regression with Spatial Hierarchical Prior. This is a hierarchical logistic regression
model from political science. The prior captures dependencies, such as states and regions, in a
polling dataset from the United States 1988 presidential election (?). The model is nonconjugate
and would require some form of approximation to derive a �� algorithm. (Details in Appendix G.)

The dataset includes 145 regressors, which include age, education, and state and region indica-
tors. We use 10 000 data points for training and withhold 1536 for evaluation.

Results. Figure 10 plots average log predictive accuracy as a function of time. For these simple
models, all methods reach the same predictive accuracy. We study ���� with two settings of M , the
number of �� samples used to estimate gradients. A single sample per iteration is su�cient; it also
is the fastest. (We set M D 1 from here on.)

8. ���� is an adaptive extension of ���. It is the default sampler in Stan.

16

The optimal transform can be written as ϕ−1(P(z))
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What’s the value of automation?

Studying multiple models
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Figure 11: Non-negative matrix factorization of the Frey Faces dataset.
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(b) Full dataset of 250 000 images

Figure 12: Held-out predictive accuracy results | ��� of the image���� image histogram dataset.
(a) ���� outperforms ���� (?). (b) ���� scales to large datasets by subsampling minibatches of
size B from the dataset at each iteration (?).

to suboptimal solutions, an e�ect also observed in (?). ���� converges in about two hours; ����
cannot handle such large datasets.

4.4 A Case Study: Exploring Millions of Taxi Trajectories

How might a data scientist use ���� in practice? How easy is it to develop new models? To answer
these questions, we apply ���� to a modern exploratory data analysis task: analyzing tra�c patterns.

The city of Porto has a centralized taxi system of 442 cars. When serving customers, each taxi
reports its spatial location at 15 second intervals; this sequence of .x; y/ coordinates describes the

18
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Questions

Can you learn to initialize from the Stan program?
Is there a lightweight way to choose hyperparameters?
Can we expand the class of models to say where the posterior
support doesn’t match the prior?
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Problem: Accuracy

Consider the model

yt ∼ N (0, exp(ht/2))

where the volatility itself follows an auto-regressive process

ht ∼ N (µ+ ϕ(ht−1 − µ), σ) with initialization h1 ∼ N (µ,
σ√

1 − ϕ2
).

We posit the following priors for the latent variables

µ ∼ Cauchy(0, 10), ϕ ∼ Unif(−1, 1), and σ ∼ LogNormal(0, 10).
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Mean-Field Variational Bayes
Automatic Differentiation Variational Inference

t

Posterior mean of ht

Sampling
Mean-field

Figure 6: Comparison of posterior mean estimates of volatility.

Stochastic volatility time-series model. Consider a stochastic volatility model that describes the
variance of an economic asset across discrete time measurements (?). An autoregressive process
models latent volatility; thus we expect posterior estimates of volatility to be correlated, especially
when the volatility deviates from the mean.

The likelihood exhibits the latent volatility as part of the variance of a Gaussian

yt ! N .0; exp.ht=2//

where the volatility itself follows an auto-regressive process

ht ! N .!C ".ht!1 " !/; #/ with initialization h1 ! N

!
!;

#p
1 " "2

"
:

We posit the following priors for the latent variables

! ! Cauchy.0; 10/; " ! Unif."1; 1/; and # ! LogNormal.0; 10/:

We set ! D "1:025, " D 0:9 and # D 0:6, and draw 500 time-steps from the generative model
above. Figure 6 plots the posterior mean of the volatility ht as a function of time. Mean-field advi
struggles to describe the mean of the posterior, particularly when the volatility drifts far away from
!. In contrast, full-rank advi matches the estimates obtained from sampling.

We further investigate this by drawing 1000 posterior samples of the latent volatility. Figure 7
shows the empirical posterior covariance matrix for each method. The mean-field covariance (fig. 7a)
fails to capture the locally correlated structure of the full-rank and sampling covariance matrices
(figs. 7b and 7c). The regions where the local correlation is strongest correspond to the regions
where mean-field underestimates the volatility in Figure 6. All empirical covariance matrices exhibit
a blurry spread due to finite sample size.
Recommendations. Data scientists interested in posterior inference should use the full-rank approx-
imation. Full-rank advi captures posterior correlations, in turn producing more accurate marginal
variance estimates. For large models, however, full-rank advi can be prohibitvely slow to use.

Data scientits interested in prediction should use the mean-field approximation. Mean-field advi
offers a fast algorithm for approximating the posterior mean. In practice, accurate posterior mean
estimates dominate predictive accuracy; underestimating marginal variances matters less.
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Posit a richer approximation

Instead of a factorized normal, consider a multivariate normal
approximation on the unconstrained model.
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Figure 6: Comparison of posterior mean estimates of volatility.

Stochastic volatility time-series model. Consider a stochastic volatility model that describes the
variance of an economic asset across discrete time measurements (?). An autoregressive process
models latent volatility; thus we expect posterior estimates of volatility to be correlated, especially
when the volatility deviates from the mean.

The likelihood exhibits the latent volatility as part of the variance of a Gaussian

yt ⇠ N .0; exp.ht=2//

where the volatility itself follows an auto-regressive process

ht ⇠ N .�C �.ht�1 � �/; �/ with initialization h1 ⇠ N

✓

�;

�

p

1 � �

2

◆

:

We posit the following priors for the latent variables

� ⇠ Cauchy.0; 10/; � ⇠ Unif.�1; 1/; and � ⇠ LogNormal.0; 10/:

We set � D �1:025, � D 0:9 and � D 0:6, and draw 500 time-steps from the generative model
above. Figure 6 plots the posterior mean of the volatility ht as a function of time. Mean-field ����
struggles to describe the mean of the posterior, particularly when the volatility drifts far away from
�. In contrast, full-rank ���� matches the estimates obtained from sampling.

We further investigate this by drawing 1000 posterior samples of the latent volatility. Figure 7
shows the empirical posterior covariance matrix for each method. The mean-field covariance (fig. 7a)
fails to capture the locally correlated structure of the full-rank and sampling covariance matrices
(figs. 7b and 7c). The regions where the local correlation is strongest correspond to the regions
where mean-field underestimates the volatility in Figure 6. All empirical covariance matrices exhibit
a blurry spread due to finite sample size.

Recommendations. Data scientists interested in posterior inference should use the full-rank approx-
imation. Full-rank ���� captures posterior correlations, in turn producing more accurate marginal
variance estimates. For large models, however, full-rank ���� can be prohibitvely slow to use.

Data scientits interested in prediction should use the mean-field approximation. Mean-field ����
o�ers a fast algorithm for approximating the posterior mean. In practice, accurate posterior mean
estimates dominate predictive accuracy; underestimating marginal variances matters less.
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Fewer iterations are needed with the un-factorized approximation.
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Variational Models

Finding good variational distributions is modeling problem

Under review as a conference paper at ICLR 2016

zifi⇠

✓ D = {(s, t)}

d

(a) VARIATIONAL MODEL

zi x

d

(b) GENERATIVE MODEL

Figure 1: (a) Graphical model of the variational Gaussian process. The VGP generates samples of
latent variables z by evaluating random non-linear mappings of latent inputs ⇠, and then drawing
mean-field samples parameterized by the mapping. These latent variables aim to follow the posterior
distribution for a generative model (b), conditioned on data x.

“likelihood”
Q

i q(zi | �i). This specifies the variational model,

q(z;✓) =

Z hY

i

q(zi | �i)

i
q(�;✓) d�,

which is governed by prior hyperparameters ✓. Hierarchical variational models are richer than
classical variational families—their expressiveness is determined by the complexity of the prior
q(�). Many expressive variational approximations can be viewed under this construct (Jaakkola &
Jordan, 1998; Lawrence, 2000; Salimans et al., 2015; Tran et al., 2015).

2.2 GAUSSIAN PROCESSES

We now review the Gaussian process (GP) (Rasmussen & Williams, 2006). Consider a data set of m
source-target pairs D = {(sn, tn)}mn=1, where each source sn has c covariates paired with a multi-
dimensional target tn 2 Rd. We aim to learn a function over all source-target pairs, tn = f(sn),
where f : Rc ! Rd is unknown. Let the function f decouple as f = (f1, . . . , fd), where each
fi : Rc ! R. GP regression estimates the functional form of f by placing a prior,

p(f) =
dY

i=1

GP(fi;0,Kss),

where Kss denotes a covariance function k(s, s0) over pairs of inputs s, s0 2 Rc. In this paper, we
consider automatic relevance determination (ARD) kernels

k(s, s0) = �2
ARD exp

⇣
� 1

2

cX

j=1

!j(sj � s

0
j)

2
⌘
, (2)

with parameters ✓ = (�2
ARD,!1, . . . ,!c). The individual weights !j tune the importance of each

dimension. They can be driven to zero, leading to automatic dimensionality reduction.

Given data D, the conditional distribution of the GP forms a distribution over mappings which inter-
polate between input-output pairs,

p(f | D) =

dY

i=1

GP(fi;K⇠sK
�1
ss ti,K⇠⇠ �K⇠sK

�1
ss K

>
⇠s). (3)

Here, K⇠s denotes the covariance function k(⇠, s) for an input ⇠ and over all data inputs sn, and ti

represents the ith output dimension.

2.3 VARIATIONAL GAUSSIAN PROCESSES

We describe the variational Gaussian process (VGP), a Bayesian nonparametric variational model
that adapts its structure to match complex posterior distributions. The VGP generates z by gener-
ating latent inputs, warping them with random non-linear mappings, and using the warped inputs

3

ξ ∼ Normal(0, I ), fi ∼ GP(0,K )|Di
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Questions

Can you choose dependence based on the property of interest
of the posterior?
What are other distances between probability distributions
amenable to finding good posterior approximations?
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Thanks
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