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Review: Variational Inference

Goal: Fit a distribution to the posterior with optimization

Model:
e Model: p(x, z)
e Latent Variables: z
e Data: x
Variational Inference:
e Approximating Family: q(z; A)
e Minimize KL(q||p(z|x)) or maximize ELBO:

£()) = Eqllog p(x, z) — log q(z: )]
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Problem: Local Optima

ELBO for mixture model of two Gaussians
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Problem: Local Optima

ELBO for mixture model of two Gaussians
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We show the variational objective for temperatures (left to right)
T=20,T=13, T=85and T =1.
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Annealing slowly reduces temperature while optimizing the T-ELBO.
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Why only anneal the likelihood?

Modern variational inference methods subsample data
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Why only anneal the likelihood?

What happens when we anneal the prior and subsample data?
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Why only anneal the likelihood?

What happens when we anneal the prior and subsample data?
Consider Latent Dirichlet Allocation:

@ The prior on the topics is Dirichlet with parameter o = 7
@ The annealed prior is Dirichlet with parameter o =
°

Given a batch of documents the update for the topics is

D
At41 = (1= pe)Ae + pe (04 + B ;‘bdw de) :
@ When a topic is not assigned a word it is quickly driven to «

e For T =10 and 1 = .01, exp(V(%) — W(n)) ~ 10400
This is the digamma problem or the zero forcing problem.
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Multicanonical Methods

@ Annealing introduces a temperature sequence Ty to T;

@ Results are very sensitive to the temperature schedule
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Multicanonical Methods

@ Annealing introduces a temperature sequence Ty to T;
@ Results are very sensitive to the temperature schedule
@ Solution: Make T part of the model

D0
T

@ Place a multinomial prior on T
e Variational update needs Z(T)

This trades a sequence of parameters settings for integral
computation to renormalize.

Rajesh Ranganath Challenges in Variational Inference 8/25



20 500 topics, ArXiv data Temperatures, 500 topics, ArXiv
"§ : 2.5F g 1
< 72} ﬁ : <
b <
M o
= g 20| ]
w74 — svI 1 g — MVI
® — AVL, tA=0.01 2 — AVI0.01 .
g 76 — AVLtA=01 | B 150 — Aviol fn |
5 — AVLtA=1 i AVI 1.0 :
L 78 4 » -
e Broprnf AL

0 2000 4000 6000 8000 10000 10° 10! 10 10° 10
iterations iterations

Similar results on factorial mixtures
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@ Is this procedure always better? Adding latent variables can
introduce new optima?

@ More generally, what are automated model transforms that
preserve model semantics while improving computation?

Rajesh Ranganath Challenges in Variational Inference 10/25



Problem: Automation

A lot of variational inference methods are black box, but what
happens if we try to develop them in a programming framework?
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Specifying a Model in Stan

data {
int N; // number of observations
a=150=1 int x[N]; // discrete-valued observations
}
n parameters {
l // latent variable, must be positive

real<lower=0> theta;

}
model {

// non-conjugate prior for latent variable
theta ~ weibull(1.5, 1);
// likelihood
for (n in 1:N)
N x[n] ~ poisson(theta);
}
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Automatic Differentiation Variational Inference (ADVI)

What does it work for? Differentiable models where the posterior
has same support as the prior
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

T Prior
;\ Posterior
21 4 1 Approximation
8 T
0 -1 0 1 25

o 1 2 3

(a) Latent variable space (b) Real coordinate space

Posit a factorized normal approximation on this space
14 /25
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

Prior
—h
Posterior
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(a) Real coordinate space (b) Standardized space
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Automatic Differentiation Variational Inference (ADVI)

How does it work?

Use Monte Carlo estimate reparameterization
gradient to optimize the ELBO

VAL() = Eygo[Vellog p(x, 2)]V22(6)] + VaHd]
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ADVI: Does it work?

Average Log Predictive

e ADVI (M=1)
s ADVIT (M=10)
NUTS
HMC
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(a) Linear Regression with ARD
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(b) Hierarchical Logistic Regression
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The Role of Transforms

There exist multiple maps from the constrained to the
unconstrained space.

@ For example from: R, — R
@ T1:log(x)and T2: log(exp(x)—1)

—— True Posterior

fy —— ADVI with T}
% 1 1 1 ——— ADVI with T
[a]
0 1 2 0 1 2 0 1 2 0
(a) Gamma(1, 2) (b) Gamma(2.5, 4.2) (¢) Gamma(10, 10)
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The Role of Transforms

There exist multiple maps from the constrained to the
unconstrained space.

@ For example from: R, — R
@ T1:log(x)and T2: log(exp(x)—1)

—— True Posterior

fy —— ADVI with T}
% 1 1 1 ——— ADVI with T
[a]
0 1 2 0 1 2 0 1 2 0
(a) Gamma(1, 2) (b) Gamma(2.5, 4.2) (¢) Gamma(10, 10)

@ The optimal transform can be written as ¢~ *(P(z))
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What's the value of automation?
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What's the value of automation?

Studying multiple models
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(a) Gamma Poisson Predictive Likelihood  (b) Dirichlet Exponential Predictive Likelihood

(¢) Gamma Poisson Factors (d) Dirichlet Exponential Factors
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e Can you learn to initialize from the Stan program?
@ Is there a lightweight way to choose hyperparameters?

@ Can we expand the class of models to say where the posterior
support doesn’t match the prior?
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Problem: Accuracy

Consider the model
ye ~ N (0, exp(h:/2))

where the volatility itself follows an auto-regressive process

o

Neera

hy ~ N(p+ ¢(he—1 — p),0)  with initialization  h; ~ N (p,

We posit the following priors for the latent variables

u ~ Cauchy(0,10), ¢ ~ Unif(—1,1), and o ~ LogNormal(0,10).
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Mean-Field Variational Bayes

Posterior mean of /;
M N
/ t
—— Sampling
Mean-field
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Posit a richer approximation

Instead of a factorized normal, consider a multivariate normal
approximation on the unconstrained model.
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Correlations Help Expectations

Posterior mean of /;

Mean-field
Full-rank

\/ \/ \z\/\«/ —— Sampling

Fewer iterations are needed with the un-factorized approximation.
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Variational Models

Finding good variational distributions is modeling problem
6 D={(st);
"
4 l 2

¢ ~ Normal(0, /), fi ~ GP(0, K)|D;
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@ Can you choose dependence based on the property of interest
of the posterior?

@ What are other distances between probability distributions
amenable to finding good posterior approximations?
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