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Review: Variational Inference

Goal: Fit a distribution to the posterior with optimization

Model:

Model: p(x , z)

Latent Variables: z

Data: x

Variational Inference:

Approximating Family: q(z ;λ)

Minimize KL(q||p(z | x)) or maximize ELBO:

L(λ) = Eq[log p(x , z)− log q(z ;λ)]
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Hierarchical Variational Models

Variational approximations by using priors on tractable families

We focus on the mean-field
Manuscript under review by AISTATS 2016
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Figure 1: Graphical model representation. (a) In mean-
field models, the latent variables are strictly independent.
(b) In hierarchical variational models, the latent variables
are governed by a prior distribution on their parameters,
which induces arbitrarily complex structure.

posterior variable zi is conditionally independent. Thus
we term qHVM as the hierarchical variational model, which
can either be a discrete or continuous distribution. Fig-
ure 1 displays this graphically. For simplicity, we focus on
one level hierarchies.

The augmentation with a variational prior has strong ties
to empirical Bayesian methods, which use data to estimate
hyperparameters of a prior distribution (Robbins, 1964;
Efron and Morris, 1973). In general, empirical Bayes
considers the fully Bayesian treatment of a hyperprior
on the original prior—here, the variational prior on the
original mean-field—and proceeds to integrate it out. As
this is analytically intractable, much work has been on
parametric estimation, which seek point estimates rather
than the whole distribution encoded by the hyperprior.
We avoid this at the level of the hyperprior (variational
prior) based on techniques discussed later; however, our
procedure can still be viewed in this framework at one
higher level. That is, we seek a point estimate of the
"variational hyperprior" which governs the parameters on
the variational prior.

A similar methodology also arises in the policy search
literature (Rückstieß et al., 2008; Sehnke et al., 2008).
Policy search methods aim to maximize the expected re-
ward for a sequential decision-making task, by positing
a distribution over trajectories and proceeding to learn
its parameters. This distribution is known as the policy,
and an upper-level policy considers a distribution over
the original policy. This encourages exploration in the
latent variable space and can be seen as a form of anneal-
ing.

The variational prior q(�;✓ ) is parameterized by a vector
✓ . These are the parameters we optimize over to find the

optimal variational distribution within the class of hierar-
chical variational models. The ELBO using the hierarchical
variational model is

L (✓ ) = EqHVM(z;✓ )[log p(x,z)� log qHVM(z;✓ )]. (3)

We can lay out the properties required of variational
models to ensure that the objective remains analytically
tractable. The first term in the objective is tractable as
long as we can sample from q and q has proper sup-
port. The second term with log qHVM(z;✓ ), the entropy,
contains an integral (Eq.2) that is in general analytically
intractable.

We construct a bound on the entropy term by introducing
a distribution r(� |z;�) with parameters �, and applying
the variational principle:

�EqHVM
[log qHVM(z)] (4)

� �Eq(z,�)[log q(�) + log q(z |�)� log r(� |z;�)].

It can be shown that the bound is exact when r(� |z;�)
matches the variational posterior q(� |z;✓ ). From this
perspective, we can view r as a recursive variational ap-
proximation. That is, it is a model for the posterior q of
the mean-field parameters � given a realization of the
latent variables z.

The bound is derived by introducing a term KL(qkr). Due
to the asymmetry of KL-divergence, r could also be sub-
stituted into the first rather than the second argument
of the KL divergence; this produces an alternative bound
to Eq.4. The bound can also be extended to multi-level
hierarchical variational models, where now we model the
posterior distribution q of the higher levels using higher
levels in r. Derivations of the bound and more details are
available in the appendix.

We note that Eq.4 is tighter than the trivial conditional
entropy bound of H[qHVM]� H[q |�] (Cover and Thomas,
2012). This bound is attained when specifying the recur-
sive approximation to be the prior, i.e., it is the special
case when r(� |z;�) = q(�;✓ ).

Substituting the entropy bound (Eq.4) into the ELBO in
Eq.3 gives a tractable lower bound which we call the
hierarchical ELBO, denoted with fL :

fL (✓ ,�) = Eq(z,�;✓ )

î
log p(x,z) + log r(� |z;�)

�
dX

i=1

log q(zi |�i)� log q(�;✓ )
ó
.

(5)

As all of the terms are known, this objective is tractable.
We can fit q and r simultaneously by maximizing Eq.5 with
respect to ✓ and �. Maximizing this bound is equivalent
to minimizing an upper bound on the KL-divergence of
qHVM to the black box posterior p(z | x). Similar to the EM-
algorithm (Dempster et al., 1977), optimizing ✓ improves
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Hierarchical Variational Models

Mean-field distribution: q(z ;λ) =
∏d

i=1 q(zi ;λi )

Hierarchical variational approximation
q(z ; θ) =

∫ ∏d
i=1 q(zi |λi )q(λ; θ)dλ
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Example HVM Priors

Multivariate Normal: q(λ) = Normal(µ,Σ)

Normalizing Flow:

q0 ∼ F

log q(λ) = log q(λ0)−
K∑

k=1

log

(∣∣∣∣det( ∂fk∂zk
)

∣∣∣∣)
The number of free moments equals the number of
parameters in the hyperprior
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How to find a good HVM?

Entropy is intractable

Approximate by expanding the model and doing VI

z
x

�

r.�jz; xI �/

L̃(θ, ϕ) = Eq[log p(x , z) + log r(λ | x , z ;ϕ)− log q(z , λ; θ)]

Looser than VB in the marginal model
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Stochastic Gradient of HVM

∇λL = Eq[∇λ log q(z ;λ)(log p(x , z)− log q(z ;λ))]

Variance of Monte Carlo estimates scales with learning signal

Mean-field gradient:
∇λi

L = Eq(i) [∇λi
log q(zi ;λi )(log pi (x , z(i))− log q(zi ;λi ))]

Gradient of HVM is

∇θL̃(θ, ϕ) = Es(ϵ)[∇θλ(ϵ)∇λLmf(λ)]

+ Es(ϵ)[∇θλ(ϵ)∇λ[log r(λ | z ;ϕ)− log q(λ; θ)]]

+ Es(ϵ)[∇θλ(ϵ)Eq(z |λ)[∇λ log q(z ;λ) log r(λ | z ;ϕ)]].

If r factorizes in z , we maintain computational efficiency
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Deep Exponential Families
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Results on Deep Exponential Families

Results on DEF with Poisson latent layers

Model HVM Mean-Field

NYT 100 3570 3570
100-30 3460 3660
100-30-15 3480 3550

Science 100 3360 3377
100-30 3080 3240
100-30-15 3110 3190

Held out Perplexity; Similar results on sigmoid belief networks
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HVM with Gaussian Processes

We can build variational models with Gaussian processes.

Under review as a conference paper at ICLR 2016
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Figure 1: (a) Graphical model of the variational Gaussian process. The VGP generates samples of
latent variables z by evaluating random non-linear mappings of latent inputs ⇠, and then drawing
mean-field samples parameterized by the mapping. These latent variables aim to follow the posterior
distribution for a generative model (b), conditioned on data x.

“likelihood”
Q

i q(zi | �i). This specifies the variational model,

q(z;✓) =

Z hY

i

q(zi | �i)

i
q(�;✓) d�,

which is governed by prior hyperparameters ✓. Hierarchical variational models are richer than
classical variational families—their expressiveness is determined by the complexity of the prior
q(�). Many expressive variational approximations can be viewed under this construct (Jaakkola &
Jordan, 1998; Lawrence, 2000; Salimans et al., 2015; Tran et al., 2015).

2.2 GAUSSIAN PROCESSES

We now review the Gaussian process (GP) (Rasmussen & Williams, 2006). Consider a data set of m
source-target pairs D = {(sn, tn)}mn=1, where each source sn has c covariates paired with a multi-
dimensional target tn 2 Rd. We aim to learn a function over all source-target pairs, tn = f(sn),
where f : Rc ! Rd is unknown. Let the function f decouple as f = (f1, . . . , fd), where each
fi : Rc ! R. GP regression estimates the functional form of f by placing a prior,

p(f) =
dY

i=1

GP(fi;0,Kss),

where Kss denotes a covariance function k(s, s0) over pairs of inputs s, s0 2 Rc. In this paper, we
consider automatic relevance determination (ARD) kernels

k(s, s0) = �2
ARD exp

⇣
� 1

2

cX

j=1

!j(sj � s

0
j)

2
⌘
, (2)

with parameters ✓ = (�2
ARD,!1, . . . ,!c). The individual weights !j tune the importance of each

dimension. They can be driven to zero, leading to automatic dimensionality reduction.

Given data D, the conditional distribution of the GP forms a distribution over mappings which inter-
polate between input-output pairs,

p(f | D) =

dY

i=1

GP(fi;K⇠sK
�1
ss ti,K⇠⇠ �K⇠sK

�1
ss K

>
⇠s). (3)

Here, K⇠s denotes the covariance function k(⇠, s) for an input ⇠ and over all data inputs sn, and ti

represents the ith output dimension.

2.3 VARIATIONAL GAUSSIAN PROCESSES

We describe the variational Gaussian process (VGP), a Bayesian nonparametric variational model
that adapts its structure to match complex posterior distributions. The VGP generates z by gener-
ating latent inputs, warping them with random non-linear mappings, and using the warped inputs

3

ξ ∼ Normal(0, I ), fi ∼ GP(0,K )|Di
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Results on Variational Autoencoders

Model − log p(x) ≤

DLGM + VAE [Burda et al., 2015] 86.76
DLGM + HVI (8 leapfrog steps) [Salimans et al., 2015] 85.51 88.30
DLGM + NF (k = 80) [Rezende + Mohamed, 2015] 85.10
EoNADE-5 2hl (128 orderings) [Raiko et al., 2015] 84.68
DBN 2hl [Murray + Salakhutdinov, 2009] 84.55
DARN 1hl [Gregor et al., 2014] 84.13
Convolutional VAE + HVI [Salimans et al., 2015] 81.94 83.49
DLGM 2hl + IWAE (k = 50) [Burda et al., 2015] 82.90
DRAW [Gregor et al. 2015] 80.97

DLGM 1hl + VGP 83.64
DLGM 2hl + VGP 81.90
DRAW + VGP 80.11

We also find richer latent representations than the VAE or IWAE.
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