Hierarchical Variational Models

Rajesh Ranganath, Dustin Tran, David M. Blei

December 11, 2015

Review: Variational Inference

Goal: Fit a distribution to the posterior with optimization

Model:

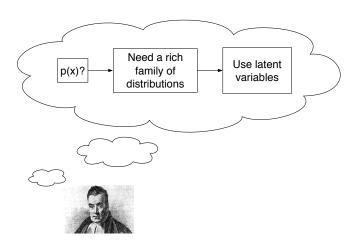
- Model: p(x, z)
- Latent Variables: z
- Data: x

Variational Inference:

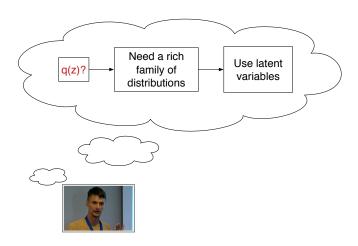
- Approximating Family: $q(z; \lambda)$
- Minimize KL(q||p(z|x)) or maximize ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_q[\log p(x, z) - \log q(z; \lambda)]$$

Models

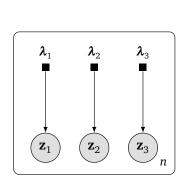


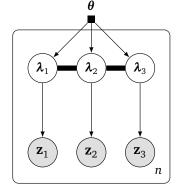
Variational Models



Hierarchical Variational Models

- Variational approximations by using priors on tractable families
- We focus on the mean-field



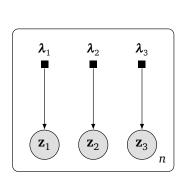


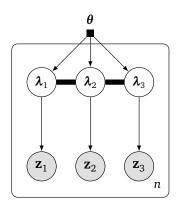
(a) MEAN-FIELD MODEL

(b) HIERARCHICAL MODEL

Hierarchical Variational Models

- Mean-field distribution: $q(z; \lambda) = \prod_{i=1}^d q(z_i; \lambda_i)$
- Hierarchical variational approximation $q(z; \theta) = \int \prod_{i=1}^{d} q(z_i | \lambda_i) q(\lambda; \theta) d\lambda$





- (a) MEAN-FIELD MODEL
- (b) HIERARCHICAL MODEL

Example HVM Priors

- Multivariate Normal: $q(\lambda) = \text{Normal}(\mu, \Sigma)$
- Normalizing Flow:

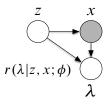
$$q_0 \sim F$$

$$\log q(\lambda) = \log q(\lambda_0) - \sum_{k=1}^K \log \left(\left| \det(\frac{\partial f_k}{\partial z_k}) \right| \right)$$

 The number of free moments equals the number of parameters in the hyperprior

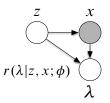
How to find a good HVM?

- Entropy is intractable
- Approximate by expanding the model and doing VI



How to find a good HVM?

- Entropy is intractable
- Approximate by expanding the model and doing VI



- $\widetilde{\mathcal{L}}(\theta, \phi) = \mathbb{E}_q[\log p(x, z) + \log r(\lambda \mid x, z; \phi) \log q(z, \lambda; \theta)]$
- Looser than VB in the marginal model

Stochastic Gradient of HVM

- $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_q[\nabla_{\lambda} \log q(z; \lambda)(\log p(x, z) \log q(z; \lambda))]$
- Variance of Monte Carlo estimates scales with learning signal

Stochastic Gradient of HVM

- $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_q[\nabla_{\lambda} \log q(z; \lambda)(\log p(x, z) \log q(z; \lambda))]$
- Variance of Monte Carlo estimates scales with learning signal
- Mean-field gradient:

$$\nabla_{\lambda_i} \mathcal{L} = E_{q_{(i)}} [\nabla_{\lambda_i} \log q(z_i; \lambda_i) (\log p_i(x, z_{(i)}) - \log q(z_i; \lambda_i))]$$

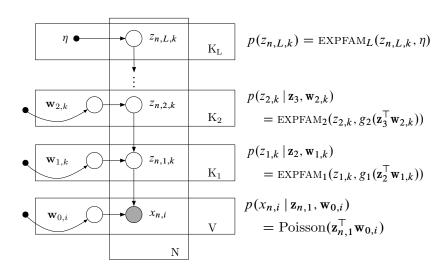
Stochastic Gradient of HVM

- $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_q[\nabla_{\lambda} \log q(z; \lambda)(\log p(x, z) \log q(z; \lambda))]$
- Variance of Monte Carlo estimates scales with learning signal
- Mean-field gradient: $\nabla_{\lambda_i} \mathcal{L} = E_{q_{(i)}} [\nabla_{\lambda_i} \log q(z_i; \lambda_i) (\log p_i(x, z_{(i)}) \log q(z_i; \lambda_i))]$
- Gradient of HVM is

$$\begin{split} \nabla_{\theta} \widetilde{\mathcal{L}}(\theta, \phi) &= \mathbb{E}_{s(\epsilon)} [\nabla_{\theta} \lambda(\epsilon) \nabla_{\lambda} \mathcal{L}_{\text{MF}}(\lambda)] \\ &+ \mathbb{E}_{s(\epsilon)} [\nabla_{\theta} \lambda(\epsilon) \nabla_{\lambda} [\log r(\lambda \mid z; \phi) - \log q(\lambda; \theta)]] \\ &+ \mathbb{E}_{s(\epsilon)} [\nabla_{\theta} \lambda(\epsilon) \mathbb{E}_{q(\mathbf{z} \mid \lambda)} [\nabla_{\lambda} \log q(z; \lambda) \log r(\lambda \mid z; \phi)]]. \end{split}$$

If r factorizes in z, we maintain computational efficiency

Deep Exponential Families



Results on Deep Exponential Families

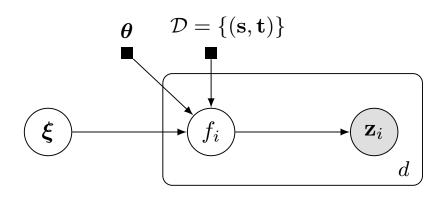
Results on DEF with Poisson latent layers

	Model	HVM	Mean-Field
NYT	100	3570	3570
	100-30	3460	3660
	100-30-15	3480	3550
Science	100	3360	3377
	100-30	3080	3240
	100-30-15	3110	3190

Held out Perplexity; Similar results on sigmoid belief networks

HVM with Gaussian Processes

We can build variational models with Gaussian processes.



$$\xi \sim \text{Normal}(0, I), \ f_i \sim \text{GP}(0, K) | \mathcal{D}_i$$

Results on Variational Autoencoders

Model	$-\log p(\mathbf{x})$	<u> </u>
DLGM + VAE [Burda et al., 2015]		86.76
DLGM + HVI (8 leapfrog steps) [Salimans et al., 2015]	85.51	88.30
DLGM + NF (k = 80) [Rezende + Mohamed, 2015]		85.10
EoNADE-5 2hl (128 orderings) [Raiko et al., 2015]	84.68	
DBN 2hl [Murray + Salakhutdinov, 2009]	84.55	
DARN 1hl [Gregor et al., 2014]	84.13	
Convolutional VAE + HVI [Salimans et al., 2015]	81.94	83.49
DLGM 2hl + IWAE ($k = 50$) [Burda et al., 2015]		82.90
DRAW [Gregor et al. 2015]		80.97
DLGM 1hl + VGP		83.64
DLGM $2hl + VGP$		81.90
DRAW + VGP		80.11

We also find richer latent representations than the VAE or IWAE.

Thanks Again