Inference Networks for Graphical Models

Brooks Paige and Frank Wood

A probabilistic model generates data

An inverse model generates latents

Can we **learn how to sample** from the inverse model?

Idea: amortize inference by learning a map from data to target Target density $\pi(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})$, approximating family $q(\mathbf{x}|\lambda)$

Single dataset y: $\underset{\lambda}{\operatorname{argmin}} D_{KL}(\pi || q_{\lambda})$ fit λ to learn an importance sampling proposal

Averaging over all possible datasets: $\lambda = \varphi(\eta, \mathbf{y})$ (($||q_{\varphi(\eta, \mathbf{y})})]$ (($||q_{\varphi(\eta, \mathbf{y})})]$ (($||q_{\varphi(\eta, \mathbf{y})})]$ (($||q_{\varphi(\eta, \mathbf{y})})]$ (()