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The problem

Approximate inference using Expectation Propagation (EP) usually
gives excellent results for Gaussian latent variable models.

EP can become inefficient if model is very large.

Assumptions on 'randomness’ of the problem leads to simplification of
EP fixed points (TAP equations).

New: Algorithms that converge to these fixed points.
More details in arXiv:1509.01229 [cond-mat.dis-nn]
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Example: Compressed sensing

Y = AX + € with K x N matrix A and Gaussian noise €.
Sparsity (spike & slab) prior po(x) = ]_[lel ((1 — p)d(xk) + \/25;763202)

@ Message passing algorithm (Donoho, Maleki, Montanari, 2009)

@ Analysis by statistical mechanics, phase diagrams, achieving of
thresholds (Krzakala, Mézard, Sausset, Sun, Zdeborovd, 2012)

© Rigorous analysis for A with random i.i.d. matrix elements
(Bayati, Montanari, 2011, Bayati, Lelarge, Montanari 2015).

© Approximate inference for other random matrix ensembles (Cakmak,
Winther, Fleury, 2014)
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Simplest model: Ising

S=(S5,...,5y) € {£1}N

N N
P(S) = S om | 4SS+ > hiS

i<j i

Try to compute marginals m; =< 5; >.
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) x exp [ ,’-V<j J,-J-S,-Sj} [ 14 fc(Sk) where

£(S) = e™S {5(S — 1) + 6(S + 1)}
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) x exp [ ,{V<J- J,-J-S,-Sj} [ 14 fc(Sk) where
fi(S) = eM> {5(S — 1) + 6(S + 1)} Approximate by Gaussian

9(S) x exp | 7L Jijsisj} TV, gk(Sk) where g(S) = e7S—225",
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) x exp [ ,{V<J- J,-J-S,-Sj} [ 14 fc(Sk) where
fi(S) = e™> {5(S — 1) + 6(S + 1)} Approximate by Gaussian

_1y,52
a(S) o< exp [S 45515, T 4(5i) where gi(S) = €75~ P,
Repeat until convergence: Choose |
© remove term g;

a\i(x) o q(S)/&i(Si)
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) x exp [ ,{V<J- J,-J-S,-Sj} [ 14 fc(Sk) where
fi(S) = e™> {5(S — 1) + 6(S + 1)} Approximate by Gaussian

_1y,52
a(S) o< exp [S 45515, T 4(5i) where gi(S) = €75~ P,
Repeat until convergence: Choose |
© remove term g;

a\i(x) o< q(S)/&i(Si)
@ Update: (tilted distribution)

Gi(S) o fi(5:)q\i(S)

© Project:
q""(S) = Project(i, q)
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) x exp [ ,{V<J- J,-J-S,-Sj} [ 14 fc(Sk) where
fi(S) = e™> {5(S — 1) + 6(S + 1)} Approximate by Gaussian

_1y,52
a(S) o< exp [S 45515, T 4(5i) where gi(S) = €75~ P,
Repeat until convergence: Choose |
© remove term g;

a\i(x) o< q(S)/&i(Si)
@ Update: (tilted distribution)

Gi(S) o fi(5:)q\i(S)
© Project:
q""(S) = Project(i, q)
Q Refine term:

() o I (S)
&i (S') q\i(s)

Random matrices
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Random matrix ensembles

Assume that coupling matrix is random and has the representation
J=0'A0

where O is random orthogonal, independent of diagonal matrix A.
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Random matrix ensembles

Assume that coupling matrix is random and has the representation
J=0'A0

where O is random orthogonal, independent of diagonal matrix A. The
distribution of J is determined by the generating function

1
Gl@ £ i gylos (¢474Y),

We also define the R—transform

dx
n=1
and its inverse
o0
R7Y(x) = E apx"
n=1
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Random matrix ensembles and their R—transforms

R(x) = B°x  for J; ~ N(0,3?/N)
Bax
R(x) = 1+ ﬁozx

1+ /1 + 4852
R(x) = V144 for J = B0OTAO with diagonal A = +1

for —J = central Wishart
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TAP equations

@ For large invariant random matrices, one can show that EP fixed
points converge to those of the TAP equations (Opper and Winther
PRE 2001, Opper, Cakmak, Winther 2015)

m = tanh(v))
Y =h+Im—R(1-qg)m

where g £ £ mim (Parisi and Potters 1995).
@ No matrix inversions !

@ How can we solve these equations efficiently?
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Analyse algorithms

o Candidate algorithm could be of the form

m(t) = tanh ({~(7), m(7) )
~(t) = h+Jm(t)

@ Average case analysis: use generating functional (Z({I(t)})), where
T-1

Z({I(1)}) =/ [T {dm(2)dv(t) 5(m(r) - tanh ({~(7), m(7)}:5))
t=0

5((t) —h — Jm(t))ei7(t)T'(t)} .
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Manfred Opper (TUB), Burak Cakmak (Aalb

Performing the average over the random matrix

With some effort we can compute the averaged generating functional for
N — oo

N
N, ~ ] / AN ({6n(2)}:0.Cy)
n=1

T-1
{dmn (£)dya(t) 5(ma(t) — tanh {m(7), va(1)}i25)
t=0
J (%(t) — by =Y _G(t,5)mu(s) — cbn(t)) eivn(t)/n(t)}
with V(- p, &

) denoting the multivariate normal distribution with mean p
and covariance ..
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Effective stochastic dynamics with memory

m(t) = tanh ({(7), m(7)}:})

~(t) =h+ z_:gA(t,S)m(T) + ¢(t) .
7=0

with ¢(t) independent discrete time Gaussian process and
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Effective stochastic dynamics with memory

m(t) = tanh ({(7), m(7)}:})
t)=h+ G(t,s)m(r) + ¢(t) .
=0

with ¢(t) independent discrete time Gaussian process and

3
N

G =R(9) =y gke(ghrk

0

1 -/ Om 1 &
=53 (5 ¢,-((3>¢ Clem) = g Lo m(Om,

i

>
Il

n=1
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Effective stochastic dynamics with memory

m(t) = tanh ({(7), m(7)}:})
t)=h+ G(t,s)m(r) + ¢(t) .
=0

with ¢(t) independent discrete time Gaussian process and

3
N

G =R(9) =y gke(ghrk

0

N
tr NZ<2Z:> C(t7) = 5 D mi(mi(r)),

i=1

>
Il

n=1

Memory could be bad for convergence !
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Single step memory algorithm

Idea: Try to kill the memory terms, i.e. require

1—q(t)

gA(t,T):O,VT?ét*]. é(t,t*l):m

R(1—q(t-1))

This leads to
m(t + 1) = tanh(%(t))

£)> ari1--u(r)
T7=0

h+Jm(t) — G(t,t — 1)m(t — 1)
Q(t —1)(1 — q(t))

u(t) =

where we define

t
= H R(1 — g(7)) and the coefficients aj via R7! Z apx"

with Q(—1) = 1. The algorithm initialises with m(t) = 0 for t € {—1,0}.
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@ J Gaussian i.i.d. (Sherrington Kirkpatrick model)
m(t + 1) = tanh(h + Jm(t) — 5%(1 — q(t))m(t — 1))
agrees with Bolthausen's (2014) result
o —J ~ Wishart
m(t + 1) = tanh(z(t) + A(t)m(t))

2(t) = ;A(f)[h + (= Bm(t)] + (1 — q(1))A(t)z(t - 1)

where

A(t) AL R(l — q(t)) — /8 )

pa(l —q(t)) 1+ Ba(l—q(t))
Coincides with AMP algorithm introduced by Kabashima (2003) in
the context of the CDMA and by Donoho, Maleki, Montanari (2009)
for compressed sensing.
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Random orthogonal ensemble: Analytical results vs

Simulation

R71(x) = x/(B%? — x?) and a, = ﬁ for n odd and a, = 0 else.
N = 2% 3 =20 and h; = 1, single realisation of J.

-26

L —#—101logy, ([Im(t) —m(t - 1)|*)

0 10logy (g(t) + q(t — 1) — 20(t.t — 1))
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— A%m(t)im(t -1)

o5k ===Cltt—1) )
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Convergence for N = 214, h; = 2 (Simulations)
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Convergence for N = 214, h; = 2 (Simulations)

0 T
p=1
-50
——10logy +[m(t) — m(t — 1)|*
-100 |
-150 -
-200 [ A3
-250 | f=:
3001\~
-350
0 50 100 150 200 250 300
t

Stability of fixed point (Almeida—Thouless line)

aR(1-¢) =1

* 00
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Analytical results vs Simulation

Random orthogonal ensemble, region of instability: N =22, 3 =10 and
hi = 2, 5 x 103 Realisations of J

1

— {(m()'m(t —1))s
- ——Ctt—1)
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@ Try to make things rigorous (random matrix theory).
@ Extend to other Gaussian latent variable models.
@ Estimate R — transform from real data.

@ Develop a new algorithm for (full) EP fixed—points using idea of
memory cancellation.
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