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The problem

Approximate inference using Expectation Propagation (EP) usually
gives excellent results for Gaussian latent variable models.

EP can become inefficient if model is very large.

Assumptions on ’randomness’ of the problem leads to simplification of
EP fixed points (TAP equations).

New: Algorithms that converge to these fixed points.

More details in arXiv:1509.01229 [cond-mat.dis-nn]
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Example: Compressed sensing

Y = AX + εεε with K × N matrix A and Gaussian noise εεε.

Sparsity (spike & slab) prior p0(x) =
∏N

k=1

(
(1− ρ)δ(xk) + ρ√

2πσ2
e−

x2k
2σ2

)
1 Message passing algorithm (Donoho, Maleki, Montanari, 2009)

2 Analysis by statistical mechanics, phase diagrams, achieving of
thresholds (Krzakala, Mézard, Sausset, Sun, Zdeborová, 2012)

3 Rigorous analysis for A with random i.i.d. matrix elements
(Bayati, Montanari, 2011, Bayati, Lelarge, Montanari 2015).

4 Approximate inference for other random matrix ensembles (Cakmak,
Winther, Fleury, 2014)
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Simplest model: Ising

S = (S1, . . . ,SN) ∈ {±1}N

P(S) =
1

Z
exp

 N∑
i<j

JijSiSj +
N∑
i

hiSi


Try to compute marginals mi

.
=< Si >.
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Gaussian Expectation - Propagation for Ising models

Write Ising model as p(S) ∝ exp
[∑N

i<j JijSiSj

]∏
k fk(Sk) where

fk(S) = ehkS {δ(S − 1) + δ(S + 1)}

Approximate by Gaussian

q(S) ∝ exp
[∑N

i<j JijSiSj

]∏N
k=1 gk(Sk) where gk(S) = eγkS−

1
2
λkS

2
.

Repeat until convergence: Choose i

1 remove term gi
q\i (x) ∝ q(S)/gi (Si )

2 Update: (tilted distribution)

q̃i (S) ∝ fi (Si )q\i (S)

3 Project:
qnew(S) = Project(q̃i , q)

4 Refine term:

g new
i (Si ) ∝

qnew(S)

q\i (S)
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Random matrix ensembles

Assume that coupling matrix is random and has the representation

J = O†ΛO

where O is random orthogonal, independent of diagonal matrix Λ.

The
distribution of J is determined by the generating function

G(Q) , lim
N→∞

1

N
log
〈
e

N
2

tr(QJ)
〉

J

We also define the R–transform

R(x) = 2
dG(x)

dx
=
∞∑
n=1

cnx
n−1

and its inverse

R−1(x) =
∞∑
n=1

anx
n
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Random matrix ensembles and their R–transforms

R(x) = β2x for Jij ∼ N (0, β2/N)

R(x) =
β2αx

1 + βαx
for −J = central Wishart

R(x) =
−1 +

√
1 + 4β2x2

2x
for J = βO†ΛO with diagonal Λ = ±1
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TAP equations

For large invariant random matrices, one can show that EP fixed
points converge to those of the TAP equations (Opper and Winther
PRE 2001, Opper, Cakmak, Winther 2015)

m = tanh(ψ)

ψ = h + Jm− R(1− q)m

where q , 1
N m†m (Parisi and Potters 1995).

No matrix inversions !

How can we solve these equations efficiently?

Manfred Opper (TUB), Burak Cakmak (Aalborg), Ole Winther (DTU) (AI group, TU Berlin)Random matrices December 17, 2015 8 / 18



Analyse algorithms

Candidate algorithm could be of the form

m(t) = tanh
(
{γ(τ),m(τ)}t−1τ=0

)
γ(t) = h + Jm(t)

Average case analysis: use generating functional 〈Z ({l(t)})〉J where

Z ({l(t)}) =

∫ T−1∏
t=0

{
dm(t)dγ(t) δ(m(t)− tanh

(
{γ(τ),m(τ)}t−1τ=0

)
)

δ(γ(t)− h− Jm(t))e iγ(t)
†l(t)
}
.
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Performing the average over the random matrix

With some effort we can compute the averaged generating functional for
N →∞

〈Z ({l(t)})〉J '
N∏

n=1

∫
dN ({φn(t)}; 0, Cφ)

T−1∏
t=0

{
dmn(t)dγn(t) δ(mn(t)− tanh {mn(τ), γn(τ)}t−1τ=0)

δ

(
γn(t)− hn −

∑
s<t

Ĝ(t, s)mn(s)− φn(t)

)
e iγn(t)ln(t)

}

with N (·;µ,Σ) denoting the multivariate normal distribution with mean µ
and covariance Σ.
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Effective stochastic dynamics with memory

m(t) = tanh
(
{γ(τ),m(τ)}t−1τ=0

)
γ(t) = h +

t−1∑
τ=0

Ĝ(t, s)m(τ) + φ(t) .

with φ(t) independent discrete time Gaussian process and

Ĝ = R(G) Cφ =
∞∑
n=1

cn

n−2∑
k=0

GkC(G†)n−2−k

G(t, τ) =
1

N

N∑
i=1

〈
∂mi (t)

∂φi (τ)

〉
φi

C(t, τ) =
1

N

N∑
i=1

〈mi (t)mi (τ)〉φi .

Memory could be bad for convergence !
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Single step memory algorithm

Idea: Try to kill the memory terms, i.e. require

Ĝ(t, τ) = 0,∀τ 6= t − 1 Ĝ(t, t − 1) =
1− q(t)

1− q(t − 1)
R(1− q(t − 1))

This leads to

m(t + 1) = tanh(ψ(t))

ψ(t) = Q(t)
t∑

τ=0

at+1−τu(τ)

u(t) =
h + Jm(t)− Ĝ(t, t − 1)m(t − 1)

Q(t − 1)(1− q(t))

where we define

Q(t) =
t∏

τ=0

R(1− q(τ)) and the coefficients ak via R−1(x) =
∞∑
n=1

anx
n .

with Q(−1) = 1. The algorithm initialises with m(t) = 0 for t ∈ {−1, 0}.
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Examples

J Gaussian i.i.d. (Sherrington Kirkpatrick model)

m(t + 1) = tanh(h + Jm(t)− β2(1− q(t))m(t − 1))

agrees with Bolthausen’s (2014) result

−J ∼ Wishart

m(t + 1) = tanh(z(t) + A(t)m(t))

z(t) =
1

β
A(t)[h + (J− βI)m(t)] + α(1− q(t))A(t)z(t − 1)

where

A(t) ,
R(1− q(t))

βα(1− q(t))
=

β

1 + βα(1− q(t))
.

Coincides with AMP algorithm introduced by Kabashima (2003) in
the context of the CDMA and by Donoho, Maleki, Montanari (2009)
for compressed sensing.
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Random orthogonal ensemble: Analytical results vs
Simulation

R−1(x) = x/(β2 − x2) and an = 1
βn+1 for n odd and an = 0 else.

N = 214, β = 20 and hi = 1, single realisation of J.

t

1 2 3 4 5 6 7 8 9 10
-29

-28

-27

-26

10 log10
(

1
N
‖m(t)−m(t− 1)‖2

)

10 log10 (q(t) + q(t− 1)− 2C(t, t− 1))
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t

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6
1
N
m(t)†m(t− 1)

C(t, t− 1)
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Convergence for N = 214, hi = 2 (Simulations)

t

0 50 100 150 200 250 300
-350

-300

-250

-200

-150

-100

-50

0

10 log10
1
N
‖m(t)−m(t− 1)‖2

β = 4

β = 3

β = 2

β = 1

β = 5

β = 7

Stability of fixed point (Almeida–Thouless line)

h

2 3 4 5 6 7 8 9 10

β

5

5.5

6

6.5

7
αR′(1− q) = 1

θ → 0
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Analytical results vs Simulation

Random orthogonal ensemble, region of instability: N = 212, β = 10 and
hi = 2, 5× 103 Realisations of J

t
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1
1
N
〈m(t)†m(t− 1)〉J

C(t, t− 1)
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Outlook

Try to make things rigorous (random matrix theory).

Extend to other Gaussian latent variable models.

Estimate R – transform from real data.

Develop a new algorithm for (full) EP fixed–points using idea of
memory cancellation.
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