
Stochastic Expectation Propagation for Large
Scale Gaussian Process Classification

Daniel Hernández–Lobato1,

Dec 11, 2015

joint work with

José Miguel Hernández-Lobato2, Yingzhen Li3, Thang Bui3 and
Richard E. Turner3.

1Universidad Autónoma de Madrid.
2Harvard University.
3Cambridge University.

1 / 10

Large Scale Learning Problems

Model with global latent variables z and hyper-parameters ξ,
observed data y and a likelihood with N factors. We want to:

I Approximate p(z|y, ξ) =
∏N

i=1 p(yi|z, ξ)p(z|ξ)/p(y|ξ).

I Find good ξ by approximately maximizing p(y|ξ).

The VI approach finds parametric q(z) and ξ by maximizing:

log p(y|ξ) ≥ L(q, ξ) =

N∑
i=1

Eq [log p(yi|z, ξ)]−KL(q||pξ) .

Stochastic gradients give a memory and cpu cost independent of N .

EP finds q by approximating each p(yi|z, ξ) with a parametric φ̃i:

q(z) =

∏N
i=1 φ̃i(z)p(z|ξ)

Zq
, φ̃i = arg min KL(p(yi|z, ξ)q\i||φ̃iq\i) ,

where q\i ∝ q/φ̃i. Allows for online learning q which is very efficient.

Can we find ξ efficiently with EP by maximizing Zq ≈ p(y|ξ)?

2 / 10

Large Scale Learning Problems

Model with global latent variables z and hyper-parameters ξ,
observed data y and a likelihood with N factors. We want to:

I Approximate p(z|y, ξ) =
∏N

i=1 p(yi|z, ξ)p(z|ξ)/p(y|ξ).

I Find good ξ by approximately maximizing p(y|ξ).

The VI approach finds parametric q(z) and ξ by maximizing:

log p(y|ξ) ≥ L(q, ξ) =

N∑
i=1

Eq [log p(yi|z, ξ)]−KL(q||pξ) .

Stochastic gradients give a memory and cpu cost independent of N .

EP finds q by approximating each p(yi|z, ξ) with a parametric φ̃i:

q(z) =

∏N
i=1 φ̃i(z)p(z|ξ)

Zq
, φ̃i = arg min KL(p(yi|z, ξ)q\i||φ̃iq\i) ,

where q\i ∝ q/φ̃i. Allows for online learning q which is very efficient.

Can we find ξ efficiently with EP by maximizing Zq ≈ p(y|ξ)?

2 / 10

Large Scale Learning Problems

Model with global latent variables z and hyper-parameters ξ,
observed data y and a likelihood with N factors. We want to:

I Approximate p(z|y, ξ) =
∏N

i=1 p(yi|z, ξ)p(z|ξ)/p(y|ξ).

I Find good ξ by approximately maximizing p(y|ξ).

The VI approach finds parametric q(z) and ξ by maximizing:

log p(y|ξ) ≥ L(q, ξ) =

N∑
i=1

Eq [log p(yi|z, ξ)]−KL(q||pξ) .

Stochastic gradients give a memory and cpu cost independent of N .

EP finds q by approximating each p(yi|z, ξ) with a parametric φ̃i:

q(z) =

∏N
i=1 φ̃i(z)p(z|ξ)

Zq
, φ̃i = arg min KL(p(yi|z, ξ)q\i||φ̃iq\i) ,

where q\i ∝ q/φ̃i. Allows for online learning q which is very efficient.

Can we find ξ efficiently with EP by maximizing Zq ≈ p(y|ξ)?

2 / 10

Large Scale Learning Problems

Model with global latent variables z and hyper-parameters ξ,
observed data y and a likelihood with N factors. We want to:

I Approximate p(z|y, ξ) =
∏N

i=1 p(yi|z, ξ)p(z|ξ)/p(y|ξ).

I Find good ξ by approximately maximizing p(y|ξ).

The VI approach finds parametric q(z) and ξ by maximizing:

log p(y|ξ) ≥ L(q, ξ) =

N∑
i=1

Eq [log p(yi|z, ξ)]−KL(q||pξ) .

Stochastic gradients give a memory and cpu cost independent of N .

EP finds q by approximating each p(yi|z, ξ) with a parametric φ̃i:

q(z) =

∏N
i=1 φ̃i(z)p(z|ξ)

Zq
, φ̃i = arg min KL(p(yi|z, ξ)q\i||φ̃iq\i) ,

where q\i ∝ q/φ̃i. Allows for online learning q which is very efficient.

Can we find ξ efficiently with EP by maximizing Zq ≈ p(y|ξ)?

2 / 10

Hyper-parameter Learning in Expectation Propagation

At convergence, the gradient of Zq w.r.t. each ξj is (Seeger, 2006):

∂ logZq

∂ξj
= (η − ηprior)T

∂θprior
∂ξj︸ ︷︷ ︸

Mismatch between q and pξ

+

N∑
i=1

∂ logEq\i [p(yi|z, ξ)]

∂ξj︸ ︷︷ ︸
Likelihood contribution

where η, ηprior are moments and θ, θprior are natural parameters.

Can we do more frequent updates of the hyper-parameters?

Yes! Take a gradient step on Zq after each complete update of all φ̃i.

(Hernández-Lobato & Hernández-Lobato, 2015)
3 / 10

Hyper-parameter Learning in Expectation Propagation

At convergence, the gradient of Zq w.r.t. each ξj is (Seeger, 2006):

∂ logZq

∂ξj
= (η − ηprior)T

∂θprior
∂ξj︸ ︷︷ ︸

Mismatch between q and pξ

+

N∑
i=1

∂ logEq\i [p(yi|z, ξ)]

∂ξj︸ ︷︷ ︸
Likelihood contribution

where η, ηprior are moments and θ, θprior are natural parameters.

Can we do more frequent updates of the hyper-parameters?

Yes! Take a gradient step on Zq after each complete update of all φ̃i.

(Hernández-Lobato & Hernández-Lobato, 2015)
3 / 10

Hyper-parameter Learning in Expectation Propagation

At convergence, the gradient of Zq w.r.t. each ξj is (Seeger, 2006):

∂ logZq

∂ξj
= (η − ηprior)T

∂θprior
∂ξj︸ ︷︷ ︸

Mismatch between q and pξ

+

N∑
i=1

∂ logEq\i [p(yi|z, ξ)]

∂ξj︸ ︷︷ ︸
Likelihood contribution

where η, ηprior are moments and θ, θprior are natural parameters.

Can we do more frequent updates of the hyper-parameters?

Yes! Take a gradient step on Zq after each complete update of all φ̃i.

(Hernández-Lobato & Hernández-Lobato, 2015)
3 / 10

EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
4 / 10

EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
4 / 10

EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
4 / 10

EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
4 / 10

EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
4 / 10

Stochastic Expectation Propagation (Li et al., 2015)

Stores only the product of all approx. factors φ̃ =
∏N

i=1 φ̃i.

Memory cost independent of the training set size N .

The EP update minimizes KL(φiq
\i||φ̃iq\i).

Cavity distribution q\i computation:

I EP: q\i ∝ q/φ̃i.

I SEP: q\i ∝ q/φ̃ 1
N .

I ADF: q\i = q.

ADF underestimates the variance!

Same updates for the hyper-parameters using the new cavity q\i.

5 / 10

Stochastic Expectation Propagation (Li et al., 2015)

Stores only the product of all approx. factors φ̃ =
∏N

i=1 φ̃i.

Memory cost independent of the training set size N .

The EP update minimizes KL(φiq
\i||φ̃iq\i).

Cavity distribution q\i computation:

I EP: q\i ∝ q/φ̃i.

I SEP: q\i ∝ q/φ̃ 1
N .

I ADF: q\i = q.

ADF underestimates the variance!

Same updates for the hyper-parameters using the new cavity q\i.

5 / 10

Stochastic Expectation Propagation (Li et al., 2015)

Stores only the product of all approx. factors φ̃ =
∏N

i=1 φ̃i.

Memory cost independent of the training set size N .

The EP update minimizes KL(φiq
\i||φ̃iq\i).

Cavity distribution q\i computation:

I EP: q\i ∝ q/φ̃i.

I SEP: q\i ∝ q/φ̃ 1
N .

I ADF: q\i = q.

ADF underestimates the variance!

Same updates for the hyper-parameters using the new cavity q\i.

5 / 10

Stochastic Expectation Propagation (Li et al., 2015)

Stores only the product of all approx. factors φ̃ =
∏N

i=1 φ̃i.

Memory cost independent of the training set size N .

The EP update minimizes KL(φiq
\i||φ̃iq\i).

Cavity distribution q\i computation:

I EP: q\i ∝ q/φ̃i.

I SEP: q\i ∝ q/φ̃ 1
N .

I ADF: q\i = q.

ADF underestimates the variance!

Same updates for the hyper-parameters using the new cavity q\i.

5 / 10

Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
6 / 10

Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
6 / 10

Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
6 / 10

Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
6 / 10

Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
6 / 10

MNIST: Model Complexity vs. Number of Instances

ADF only performs well when the number of instances is very large or

when the model considered is simple.

7 / 10

MNIST: Model Complexity vs. Number of Instances

ADF only performs well when the number of instances is very large or

when the model considered is simple.

7 / 10

Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.

8 / 10

Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.

8 / 10

Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.

8 / 10

Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.

8 / 10

Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.

8 / 10

Thank you for your attention!

9 / 10

References

Hensman, James, Matthews, Alexander, and Ghahramani, Zoubin. Scalable variational
gaussian process classification. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, 2015.

Hernández-Lobato, D. and Hernández-Lobato, J. M. Scalable Gaussian process classification
via expectation propagation. ArXiv e-prints, 2015. arXiv:1507.04513.

Heskes, Tom and Zoeter, Onno. Expectation propagation for approximate inference in dynamic
Bayesian networks. In Proceedings of the 18th Annual Conference on Uncertainty in Artificial
Intelligence, pp. 216–223, 2002.

Hoffman, Matthew D., Blei, David M., Wang, Chong, and Paisley, John. Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347, 2013.

Li, Y., Hernández-Lobato, J. M., and Turner, R. Stochastic expectation propagation. In
Advances in Neural Information Processing Systems 29, 2015.

Naish-Guzman, Andrew and Holden, Sean. The generalized fitc approximation. In Advances in
Neural Information Processing Systems 20, pp. 1057–1064. 2008.

Qi, Yuan (Alan), Abdel-Gawad, Ahmed H., and Minka, Thomas P. Sparse-posterior gaussian
processes for general likelihoods. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, pp. 450–457, 2010.

Quiñonero Candela, J. and Rasmussen, C.E. A unifying view of sparse approximate gaussian
process regression. Journal of Machine Learning Research, pp. 1935–1959, 2005.

Seeger, M. Expectation propagation for exponential families. Technical report, Department of
EECS, University of California, Berkeley, 2006.

Snelson, E. and Ghahramani, Z. Sparse gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems 18, pp. 1257–1264, 2006.

Titsias, Michalis. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

Zeiler, Matthew D. Adadelta: An adaptive learning rate method. ArXiv e-prints, 2012.
arXiv:1212.5701.

10 / 10

