Stochastic Expectation Propagation for Large Scale Gaussian Process Classification

Daniel Hernández-Lobato¹,

Dec 11, 2015

joint work with

José Miguel Hernández-Lobato², Yingzhen Li³, Thang Bui³ and Richard E. Turner³.

¹Universidad Autónoma de Madrid.

²Harvard University.

³Cambridge University.

Model with global latent variables z and hyper-parameters ξ , observed data y and a likelihood with N factors. We want to:

- ► Approximate $p(\mathbf{z}|\mathbf{y}, \boldsymbol{\xi}) = \prod_{i=1}^{N} p(y_i|\mathbf{z}, \boldsymbol{\xi}) p(\mathbf{z}|\boldsymbol{\xi}) / p(\mathbf{y}|\boldsymbol{\xi})$.
- ▶ Find good $\boldsymbol{\xi}$ by approximately maximizing $p(\mathbf{y}|\boldsymbol{\xi})$.

The VI approach finds **parametric** $q(\mathbf{z})$ and $\boldsymbol{\xi}$ by maximizing

$$\log p(\mathbf{y}|oldsymbol{\xi}) \geq \mathcal{L}(q,oldsymbol{\xi}) = \sum_{i=1}^N \mathbb{E}_q \left[\log p(y_i|\mathbf{z},oldsymbol{\xi})
ight] - \mathrm{KL}(q||p_{oldsymbol{\xi}}).$$

Stochastic gradients give a memory and cpu cost **independent** of N.

EP finds q by approximating each $p(y_i|\mathbf{z},\boldsymbol{\xi})$ with a **parametric** $\tilde{\phi}_i$:

$$q(\mathbf{z}) = \frac{\prod_{i=1}^{N} \tilde{\phi}_i(\mathbf{z}) p(\mathbf{z}|\boldsymbol{\xi})}{Z_q}, \quad \tilde{\phi}_i = \text{arg min} \quad \text{KL}(p(y_i|\mathbf{z},\boldsymbol{\xi}) q^{\setminus i} || \tilde{\phi}_i q^{\setminus i}),$$

where $q^{\setminus i} \propto q/\tilde{\phi}_i$. Allows for online learning q which is very **efficient**.

Can we find ξ efficiently with EP by maximizing $Z_q \approx p(y|\xi)$?

Model with global latent variables z and hyper-parameters ξ , observed data y and a likelihood with N factors. We want to:

- ► Approximate $p(\mathbf{z}|\mathbf{y}, \boldsymbol{\xi}) = \prod_{i=1}^{N} p(y_i|\mathbf{z}, \boldsymbol{\xi}) p(\mathbf{z}|\boldsymbol{\xi}) / p(\mathbf{y}|\boldsymbol{\xi})$.
- ▶ Find good $\boldsymbol{\xi}$ by approximately maximizing $p(\mathbf{y}|\boldsymbol{\xi})$.

The VI approach finds **parametric** $q(\mathbf{z})$ and $\boldsymbol{\xi}$ by maximizing:

$$\log p(\mathbf{y}|\boldsymbol{\xi}) \ge \mathcal{L}(q,\boldsymbol{\xi}) = \sum_{i=1}^{N} \mathbb{E}_q \left[\log p(y_i|\mathbf{z},\boldsymbol{\xi}) \right] - \mathrm{KL}(q||p_{\boldsymbol{\xi}}).$$

Stochastic gradients give a memory and cpu cost **independent** of N.

EP finds q by approximating each $p(y_i|\mathbf{z},\boldsymbol{\xi})$ with a **parametric** $\tilde{\phi}_i$:

$$q(\mathbf{z}) = \frac{\prod_{i=1}^{N} \tilde{\phi}_i(\mathbf{z}) p(\mathbf{z}|\boldsymbol{\xi})}{Z_q}, \quad \tilde{\phi}_i = \arg\min \quad \mathrm{KL}(p(y_i|\mathbf{z},\boldsymbol{\xi}) q^{\setminus i} || \tilde{\phi}_i q^{\setminus i}),$$

where $q^{\setminus i} \propto q/\tilde{\phi}_i$. Allows for online learning q which is very **efficient**.

Can we find ξ efficiently with EP by maximizing $Z_q \approx p(y|\xi)$?

Model with global latent variables z and hyper-parameters ξ , observed data y and a likelihood with N factors. We want to:

- ► Approximate $p(\mathbf{z}|\mathbf{y}, \boldsymbol{\xi}) = \prod_{i=1}^{N} p(y_i|\mathbf{z}, \boldsymbol{\xi}) p(\mathbf{z}|\boldsymbol{\xi}) / p(\mathbf{y}|\boldsymbol{\xi})$.
- Find good $\boldsymbol{\xi}$ by approximately maximizing $p(\mathbf{y}|\boldsymbol{\xi})$.

The VI approach finds **parametric** $q(\mathbf{z})$ and $\boldsymbol{\xi}$ by maximizing:

$$\log p(\mathbf{y}|\boldsymbol{\xi}) \geq \mathcal{L}(q, \boldsymbol{\xi}) = \sum_{i=1}^{N} \mathbb{E}_q \left[\log p(y_i|\mathbf{z}, \boldsymbol{\xi}) \right] - \mathrm{KL}(q||p_{\boldsymbol{\xi}}).$$

Stochastic gradients give a memory and cpu cost **independent** of N.

EP finds q by approximating each $p(y_i|\mathbf{z},\boldsymbol{\xi})$ with a **parametric** $\hat{\phi}_i$:

$$q(\mathbf{z}) = \frac{\prod_{i=1}^{N} \tilde{\phi}_i(\mathbf{z}) p(\mathbf{z}|\boldsymbol{\xi})}{Z_q}, \quad \tilde{\phi}_i = \arg\min \quad \text{KL}(p(y_i|\mathbf{z},\boldsymbol{\xi})q^{\setminus i}||\tilde{\phi}_i q^{\setminus i}),$$

where $q^{i} \propto q/\tilde{\phi}_{i}$. Allows for online learning q which is very **efficient**.

Can we find ξ efficiently with EP by maximizing $Z_q \approx p(\mathbf{y}|\boldsymbol{\xi})$?

Model with global latent variables z and hyper-parameters ξ , observed data y and a likelihood with N factors. We want to:

- ► Approximate $p(\mathbf{z}|\mathbf{y}, \boldsymbol{\xi}) = \prod_{i=1}^{N} p(y_i|\mathbf{z}, \boldsymbol{\xi}) p(\mathbf{z}|\boldsymbol{\xi}) / p(\mathbf{y}|\boldsymbol{\xi})$.
- ▶ Find good $\boldsymbol{\xi}$ by approximately maximizing $p(\mathbf{y}|\boldsymbol{\xi})$.

The VI approach finds **parametric** $q(\mathbf{z})$ and $\boldsymbol{\xi}$ by maximizing:

$$\log p(\mathbf{y}|\boldsymbol{\xi}) \geq \mathcal{L}(q, \boldsymbol{\xi}) = \sum_{i=1}^{N} \mathbb{E}_q \left[\log p(y_i|\mathbf{z}, \boldsymbol{\xi}) \right] - \mathrm{KL}(q||p_{\boldsymbol{\xi}}).$$

Stochastic gradients give a memory and cpu cost **independent** of N.

EP finds q by approximating each $p(y_i|\mathbf{z},\boldsymbol{\xi})$ with a **parametric** $\hat{\phi}_i$:

$$q(\mathbf{z}) = \frac{\prod_{i=1}^{N} \tilde{\phi}_i(\mathbf{z}) p(\mathbf{z}|\boldsymbol{\xi})}{Z_q}, \quad \tilde{\phi}_i = \text{arg min} \quad \text{KL}(p(y_i|\mathbf{z},\boldsymbol{\xi}) q^{\setminus i}||\tilde{\phi}_i q^{\setminus i}),$$

where $q^{i} \propto q/\tilde{\phi}_{i}$. Allows for online learning q which is very **efficient**.

Can we find ξ efficiently with EP by maximizing $Z_q \approx p(y|\xi)$?

Hyper-parameter Learning in Expectation Propagation

At **convergence**, the gradient of Z_q w.r.t. each ξ_j is (Seeger, 2006):

$$\frac{\partial \log Z_q}{\partial \xi_j} = \underbrace{(\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j}}_{\text{Mismatch between } q \text{ and } p_{\xi}} + \underbrace{\sum_{i=1}^{N} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}}_{\text{Likelihood contribution}}$$

where η , η_{prior} are moments and θ , θ_{prior} are natural parameters.

Can we do **more frequent updates** of the hyper-parameters?

Yes! Take a gradient step on Z_q after each complete update of all $\tilde{\phi}_i$.

Hyper-parameter Learning in Expectation Propagation

At **convergence**, the gradient of Z_q w.r.t. each ξ_j is (Seeger, 2006):

$$\frac{\partial \log Z_q}{\partial \xi_j} = \underbrace{(\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j}}_{\text{Mismatch between } q \text{ and } p_{\xi}} + \underbrace{\sum_{i=1}^{N} \frac{\partial \log \mathbb{E}_{q^{\setminus i}}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}}_{\text{Likelihood contribution}}$$

where η , η_{prior} are moments and θ , θ_{prior} are natural parameters.

Can we do **more frequent updates** of the hyper-parameters?

Yes! Take a gradient step on Z_q after each complete update of all ϕ_i .

Hyper-parameter Learning in Expectation Propagation

At **convergence**, the gradient of Z_q w.r.t. each ξ_j is (Seeger, 2006):

$$\frac{\partial \log Z_q}{\partial \xi_j} = \underbrace{(\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j}}_{\text{Mismatch between } q \text{ and } p_{\xi}} + \underbrace{\sum_{i=1}^{N} \frac{\partial \log \mathbb{E}_{q^{\setminus i}}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}}_{\text{Likelihood contribution}}$$

where η , η_{prior} are moments and θ , θ_{prior} are natural parameters.

Can we do **more frequent updates** of the hyper-parameters?

Yes! Take a gradient step on Z_q after each complete update of all $\tilde{\phi}_i$.

Training Time in Seconds

(Hernández-Lobato & Hernández-Lobato, 2015)

Stochastic estimate of the gradient using a mini-batch \mathcal{M}_k :

$$\frac{\partial \log Z_q}{\partial \xi_j} \approx (\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j} + \frac{N}{|\mathcal{M}_k|} \sum_{i \in \mathcal{M}_k} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}$$

Allows for more frequent hyper-parameter updates

EP algorithm with mini-batches:

- 1. $\forall i \in \mathcal{M}_k$, update $\tilde{\phi}_i$
- 2. Reconstruct the approximation q.
- 3. Compute a noisy estimate of the gradient of $\log Z_q$ w.r.t. each ξ_j .
- 4. Update all hyper-parameters ξ_j .
- 5. Reconstruct the approximation q

The training cost is independent of the training set size N.

The memory resources scale with the training set size N.

Stochastic estimate of the gradient using a mini-batch \mathcal{M}_k :

$$\frac{\partial \log Z_q}{\partial \xi_j} \approx (\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j} + \frac{N}{|\mathcal{M}_k|} \sum_{i \in \mathcal{M}_k} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}$$

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

- 1. $\forall i \in \mathcal{M}_k$, update $\tilde{\phi}_i$
- 2. Reconstruct the approximation q.
- 3. Compute a noisy estimate of the gradient of $\log Z_q$ w.r.t. each ξ_j .
- 4. Update all hyper-parameters ξ_i .
- 5. Reconstruct the approximation q

The training cost is independent of the training set size N.

The memory resources scale with the training set size N.

Stochastic estimate of the gradient using a mini-batch \mathcal{M}_k :

$$\frac{\partial \log Z_q}{\partial \xi_j} \approx \left(\eta - \eta_{\text{prior}}\right)^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j} + \frac{N}{|\mathcal{M}_k|} \sum_{i \in \mathcal{M}_k} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}$$

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

- 1. $\forall i \in \mathcal{M}_k$, update ϕ_i .
- 2. Reconstruct the approximation q.
- Compute a noisy estimate of the gradient of $\log Z_a$ w.r.t. each ξ_i .
- 4. Update all hyper-parameters ξ_i .
- 5. Reconstruct the approximation q.

Training Time in Seconds in a log10 Scale

Stochastic estimate of the gradient using a mini-batch \mathcal{M}_k :

$$\frac{\partial \log Z_q}{\partial \xi_j} \approx (\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j} + \frac{N}{|\mathcal{M}_k|} \sum_{i \in \mathcal{M}_k} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}$$

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

- 1. $\forall i \in \mathcal{M}_k$, update $\hat{\phi}_i$.
- 2. Reconstruct the approximation q.
- Compute a noisy estimate of the gradient of $\log Z_a$ w.r.t. each ξ_i .
- 4. Update all hyper-parameters ξ_i .
- 5. Reconstruct the approximation q.

Training Time in Seconds in a log10 Scale

The training cost is independent of the training set size N.

Stochastic estimate of the gradient using a mini-batch \mathcal{M}_k :

$$\frac{\partial \log Z_q}{\partial \xi_j} \approx (\eta - \eta_{\text{prior}})^{\text{T}} \frac{\partial \theta_{\text{prior}}}{\partial \xi_j} + \frac{N}{|\mathcal{M}_k|} \sum_{i \in \mathcal{M}_k} \frac{\partial \log \mathbb{E}_{q \setminus i}[p(y_i | \mathbf{z}, \boldsymbol{\xi})]}{\partial \xi_j}$$

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

- 1. $\forall i \in \mathcal{M}_k$, update ϕ_i .
- 2. Reconstruct the approximation q.
- Compute a noisy estimate of the gradient of $\log Z_a$ w.r.t. each ξ_i .
- 4. Update all hyper-parameters ξ_i .
- 5. Reconstruct the approximation q.

Training Time in Seconds in a log10 Scale

The training cost is independent of the training set size N.

The memory resources scale with the training set size N.

Stores only the **product of all approx. factors** $\tilde{\phi} = \prod_{i=1}^{N} \tilde{\phi}_{i}$.

Memory cost **independent** of the training set size N

The EP update minimizes $\mathrm{KL}(\phi_i q^{\setminus i} || \tilde{\phi}_i q^{\setminus i})$. Cavity distribution $q^{\setminus i}$ computation:

- ▶ **EP**: $q^{i} \propto q/\tilde{\phi}_{i}$.
- ▶ SEP: $q^{\setminus i} \propto q/\tilde{\phi}^{\frac{1}{N}}$.
- ▶ **ADF**: $q^{i} = q$.

ADF underestimates the variance!

Stores only the **product of all approx. factors** $\tilde{\phi} = \prod_{i=1}^{N} \tilde{\phi}_{i}$.

Memory cost **independent** of the training set size N.

The EP update minimizes $\mathrm{KL}(\phi_i q^{\setminus i} || \tilde{\phi}_i q^{\setminus i})$. Cavity distribution $q^{\setminus i}$ computation:

- ▶ **EP**: $q^{i} \propto q/\tilde{\phi}_{i}$.
- ▶ SEP: $q^{\setminus i} \propto q/\tilde{\phi}^{\frac{1}{N}}$.
- $ADF: q^{i} = q.$

ADF underestimates the variance!

Stores only the **product of all approx. factors** $\tilde{\phi} = \prod_{i=1}^{N} \tilde{\phi}_i$.

Memory cost **independent** of the training set size N.

The EP update minimizes $\mathrm{KL}(\phi_i q^{\setminus i} || \tilde{\phi}_i q^{\setminus i})$. Cavity distribution $q^{\setminus i}$ computation:

EP:
$$q^{i} \propto q/\tilde{\phi}_{i}$$
.

SEP:
$$q^{i} \propto q/\tilde{\phi}^{\frac{1}{N}}$$
.

▶ **ADF**:
$$q^{\setminus i} = q$$
.

ADF underestimates the variance!

Stores only the **product of all approx. factors** $\tilde{\phi} = \prod_{i=1}^{N} \tilde{\phi}_{i}$.

Memory cost **independent** of the training set size N.

The EP update minimizes $\mathrm{KL}(\phi_i q^{\setminus i} || \tilde{\phi}_i q^{\setminus i})$. Cavity distribution $q^{\setminus i}$ computation:

EP:
$$q^{i} \propto q/\tilde{\phi}_{i}$$
.

SEP:
$$q^{i} \propto q/\tilde{\phi}^{\frac{1}{N}}$$
.

▶ **ADF**:
$$q^{\setminus i} = q$$
.

ADF underestimates the variance!

- ▶ The latent variables **z** are the values $\overline{\mathbf{f}}$ at M inducing points $\overline{\mathbf{X}}$.
- ▶ ξ include $\overline{\mathbf{X}}$ and the params of the **covariance function** $k(\cdot, \cdot)$.

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood			
Problem	ADF	EP	SEP
			$.63\pm.05$
Breast		$.11\pm.05$	$.11\pm.05$
Crabs		$.06\pm.06$	$.06\pm.07$
Heart	$.45 \pm .18$		$.39 \pm .11$
Ionosphere	.29± .18	$.26~\pm~.19$	
			$.49\pm.05$
		$.33\pm.10$	

MNIST: N = 60,000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training

- ▶ The latent variables **z** are the values $\overline{\mathbf{f}}$ at M inducing points $\overline{\mathbf{X}}$.
- ▶ ξ include $\overline{\mathbf{X}}$ and the params of the **covariance function** $k(\cdot, \cdot)$.

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood			
	M = 15%		
Problem	ADF	EP	SEP
Australian	$.70 \pm .07$	$.69 \pm .07$	$\textbf{.63}\pm.05$
Breast	$.12\pm .06$	$.11~\pm~.05$	$\textbf{.11}\pm\textbf{.05}$
Crabs	$.08 \pm .06$	$\textbf{.06}\pm\textbf{.06}$	$\textbf{.06}\pm\textbf{.07}$
Heart	$.45\pm .18$	$.40 \pm .13$	$\textbf{.39}\ \pm\ \textbf{.11}$
Ionosphere	$.29\pm .18$	$\textbf{.26}\pm\textbf{.19}$	$.28~\pm~.16$
Pima	$.52 \pm .07$	$.52 \pm .07$	$\textbf{.49}\pm\textbf{.05}$
Sonar	$.40 \pm .15$	$\textbf{.33}\ \pm\ \textbf{.10}$	$.35 \pm .11$

MNIST: N = 60,000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training

- ▶ The latent variables **z** are the values $\overline{\mathbf{f}}$ at M inducing points $\overline{\mathbf{X}}$.
- ▶ ξ include $\overline{\mathbf{X}}$ and the params of the **covariance function** $k(\cdot, \cdot)$.

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood			
	M = 15%		
Problem	ADF	EP	SEP
Australian	$.70 \pm .07$	$.69 \pm .07$	$\textbf{.63}\pm.05$
Breast	$.12\pm .06$	$.11~\pm~.05$	$\textbf{.11}\pm\textbf{.05}$
Crabs	$.08 \pm .06$	$\textbf{.06}\pm\textbf{.06}$	$\textbf{.06}\pm\textbf{.07}$
Heart	$.45\pm .18$	$.40 \pm .13$	$\textbf{.39}\ \pm\ \textbf{.11}$
Ionosphere	$.29\pm .18$	$\textbf{.26}\pm\textbf{.19}$	$.28~\pm~.16$
Pima	$.52 \pm .07$	$.52 \pm .07$	$\textbf{.49}\pm\textbf{.05}$
Sonar	$.40 \pm .15$	$\textbf{.33}\ \pm\ \textbf{.10}$	$.35 \pm .11$

MNIST: N = 60,000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

- ▶ The latent variables **z** are the values $\overline{\mathbf{f}}$ at M inducing points $\overline{\mathbf{X}}$.
- ▶ ξ include $\overline{\mathbf{X}}$ and the params of the covariance function $k(\cdot,\cdot)$.

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood			
	M = 15%		
Problem	ADF	EP	SEP
Australian	$.70 \pm .07$	$.69 \pm .07$	$\textbf{.63}\pm\textbf{.05}$
Breast	$.12\pm .06$	$.11~\pm~.05$	$\textbf{.11}\ \pm\ \textbf{.05}$
Crabs	$.08 \pm .06$	$\textbf{.06}\pm\textbf{.06}$	$\textbf{.06}\ \pm\ \textbf{.07}$
Heart	$.45\pm .18$	$.40 \pm .13$	$\textbf{.39}\ \pm\ \textbf{.11}$
Ionosphere	$.29\pm .18$	$\textbf{.26}\pm\textbf{.19}$	$.28~\pm~.16$
Pima	$.52 \pm .07$	$.52 \pm .07$	$\textbf{.49}\pm\textbf{.05}$
Sonar	$.40 \pm .15$	$\textbf{.33}\pm\textbf{.10}$	$.35~\pm~.11$

MNIST: N = 60,000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Training Time in Seconds in a log10 Scale

- ▶ The latent variables **z** are the values $\overline{\mathbf{f}}$ at M inducing points $\overline{\mathbf{X}}$.
- **\rightarrow** ξ include $\overline{\mathbf{X}}$ and the params of the **covariance function** $k(\cdot,\cdot)$.

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood			
	M = 15%		
Problem	ADF	EP	SEP
Australian	$.70 \pm .07$	$.69 \pm .07$	$\textbf{.63}\pm\textbf{.05}$
Breast	$.12\pm .06$	$.11~\pm~.05$	$\textbf{.11}\ \pm\ \textbf{.05}$
Crabs	$.08 \pm .06$	$\textbf{.06}\pm\textbf{.06}$	$\textbf{.06}\ \pm\ \textbf{.07}$
Heart	$.45\pm .18$	$.40 \pm .13$	$\textbf{.39}\ \pm\ \textbf{.11}$
Ionosphere	$.29\pm .18$	$\textbf{.26}\pm\textbf{.19}$	$.28~\pm~.16$
Pima	$.52 \pm .07$	$.52 \pm .07$	$\textbf{.49}\pm\textbf{.05}$
Sonar	$.40 \pm .15$	$\textbf{.33}\pm\textbf{.10}$	$.35~\pm~.11$

MNIST: N = 60,000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?

MNIST: Model Complexity vs. Number of Instances

ADF only performs well when the number of instances is very large or when the model considered is simple.

MNIST: Model Complexity vs. Number of Instances

ADF only performs well when the number of instances is very large or when the model considered is simple.

- ▶ It is possible to use **stochastic gradients** in expectation propagation to learn the model hyper-parameters.
- ➤ This enables using expectation propagation for approximate inference in very large datasets.
- ▶ The **memory cost** scales with N, since we have to store in memory the parameters of each approximate factor.
- ▶ Stochastic expectation propagation solves this problem without deteriorating the prediction performance!
- ▶ SEP is similar to EP in all regimes. ADF **only** when the number of instances is large and the model is small.

- ▶ It is possible to use **stochastic gradients** in expectation propagation to learn the model hyper-parameters.
- ► This enables using expectation propagation for approximate inference in **very large datasets**.
- ▶ The **memory cost** scales with N, since we have to store in memory the parameters of each approximate factor.
- ▶ Stochastic expectation propagation solves this problem without deteriorating the prediction performance!
- ▶ SEP is similar to EP in all regimes. ADF **only** when the number of instances is large and the model is small.

- ▶ It is possible to use **stochastic gradients** in expectation propagation to learn the model hyper-parameters.
- ► This enables using expectation propagation for approximate inference in **very large datasets**.
- ▶ The **memory cost** scales with N, since we have to store in memory the parameters of each approximate factor.
- ▶ Stochastic expectation propagation solves this problem without deteriorating the prediction performance!
- ▶ SEP is similar to EP in all regimes. ADF **only** when the number of instances is large and the model is small.

- ▶ It is possible to use **stochastic gradients** in expectation propagation to learn the model hyper-parameters.
- ► This enables using expectation propagation for approximate inference in **very large datasets**.
- ▶ The **memory cost** scales with N, since we have to store in memory the parameters of each approximate factor.
- ▶ Stochastic expectation propagation solves this problem without deteriorating the prediction performance!
- ▶ SEP is similar to EP in all regimes. ADF **only** when the number of instances is large and the model is small.

- ▶ It is possible to use **stochastic gradients** in expectation propagation to learn the model hyper-parameters.
- ► This enables using expectation propagation for approximate inference in **very large datasets**.
- ▶ The **memory cost** scales with N, since we have to store in memory the parameters of each approximate factor.
- ► Stochastic expectation propagation solves this problem without deteriorating the prediction performance!
- ▶ SEP is similar to EP in all regimes. ADF **only** when the number of instances is large and the model is small.

Thank you for your attention!

References

- Hensman, James, Matthews, Alexander, and Ghahramani, Zoubin. Scalable variational gaussian process classification. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, 2015.
- Hernández-Lobato, D. and Hernández-Lobato, J. M. Scalable Gaussian process classification via expectation propagation. ArXiv e-prints, 2015. arXiv:1507.04513.
- Heskes, Tom and Zoeter, Onno. Expectation propagation for approximate inference in dynamic Bayesian networks. In Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence, pp. 216–223, 2002.
- Hoffman, Matthew D., Blei, David M., Wang, Chong, and Paisley, John. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
- Li, Y., Hernández-Lobato, J. M., and Turner, R. Stochastic expectation propagation. In Advances in Neural Information Processing Systems 29, 2015.
- Naish-Guzman, Andrew and Holden, Sean. The generalized fitc approximation. In Advances in Neural Information Processing Systems 20, pp. 1057–1064. 2008.
- Qi, Yuan (Alan), Abdel-Gawad, Ahmed H., and Minka, Thomas P. Sparse-posterior gaussian processes for general likelihoods. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 450–457, 2010.
- Quiñonero Candela, J. and Rasmussen, C.E. A unifying view of sparse approximate gaussian process regression. *Journal of Machine Learning Research*, pp. 1935–1959, 2005.
- Seeger, M. Expectation propagation for exponential families. Technical report, Department of EECS, University of California, Berkeley, 2006.
- Snelson, E. and Ghahramani, Z. Sparse gaussian processes using pseudo-inputs. In Advances in Neural Information Processing Systems 18, pp. 1257–1264, 2006.
- Titsias, Michalis. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.
- Zeiler, Matthew D. Adadelta: An adaptive learning rate method. ArXiv e-prints, 2012. arXiv:1212.5701.