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Large Scale Learning Problems

Model with global latent variables z and hyper-parameters ξ,
observed data y and a likelihood with N factors. We want to:

I Approximate p(z|y, ξ) =
∏N

i=1 p(yi|z, ξ)p(z|ξ)/p(y|ξ).

I Find good ξ by approximately maximizing p(y|ξ).

The VI approach finds parametric q(z) and ξ by maximizing:

log p(y|ξ) ≥ L(q, ξ) =

N∑
i=1

Eq [log p(yi|z, ξ)]−KL(q||pξ) .

Stochastic gradients give a memory and cpu cost independent of N .

EP finds q by approximating each p(yi|z, ξ) with a parametric φ̃i:

q(z) =

∏N
i=1 φ̃i(z)p(z|ξ)

Zq
, φ̃i = arg min KL(p(yi|z, ξ)q\i||φ̃iq\i) ,

where q\i ∝ q/φ̃i. Allows for online learning q which is very efficient.

Can we find ξ efficiently with EP by maximizing Zq ≈ p(y|ξ)?
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Hyper-parameter Learning in Expectation Propagation

At convergence, the gradient of Zq w.r.t. each ξj is (Seeger, 2006):

∂ logZq

∂ξj
= (η − ηprior)T

∂θprior
∂ξj︸ ︷︷ ︸

Mismatch between q and pξ

+

N∑
i=1

∂ logEq\i [p(yi|z, ξ)]

∂ξj︸ ︷︷ ︸
Likelihood contribution

where η, ηprior are moments and θ, θprior are natural parameters.

Can we do more frequent updates of the hyper-parameters?

Yes! Take a gradient step on Zq after each complete update of all φ̃i.

(Hernández-Lobato & Hernández-Lobato, 2015)
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EP Algorithm with Stochastic Gradients

Stochastic estimate of the gradient using a mini-batch Mk:

∂ logZq

∂ξj
≈ (η − ηprior)T

∂θprior
∂ξj

+
N

|Mk|
∑

i∈Mk

∂ logEq\i [p(yi|z, ξ)]

∂ξj

Allows for more frequent hyper-parameter updates!

EP algorithm with mini-batches:

1. ∀i ∈Mk, update φ̃i.

2. Reconstruct the approximation q.

3. Compute a noisy estimate of the
gradient of logZq w.r.t. each ξj .

4. Update all hyper-parameters ξj .

5. Reconstruct the approximation q.

The training cost is independent of the training set size N .

The memory resources scale with the training set size N .
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Stochastic Expectation Propagation (Li et al., 2015)

Stores only the product of all approx. factors φ̃ =
∏N

i=1 φ̃i.

Memory cost independent of the training set size N .

The EP update minimizes KL(φiq
\i||φ̃iq\i).

Cavity distribution q\i computation:

I EP: q\i ∝ q/φ̃i.

I SEP: q\i ∝ q/φ̃ 1
N .

I ADF: q\i = q.

ADF underestimates the variance!

Same updates for the hyper-parameters using the new cavity q\i.
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Results: Sparse Gaussian Process Classification

I The latent variables z are the values f at M inducing points X.

I ξ include X and the params of the covariance function k(·, ·).

UCI Datasets: Batch Training.

Avg. neg. test log. likelihood
M = 15%

Problem ADF EP SEP
Australian .70± .07 .69 ± .07 .63 ± .05
Breast .12± .06 .11 ± .05 .11 ± .05
Crabs .08± .06 .06 ± .06 .06 ± .07
Heart .45± .18 .40 ± .13 .39 ± .11
Ionosphere.29± .18 .26 ± .19 .28 ± .16
Pima .52± .07 .52 ± .07 .49 ± .05
Sonar .40± .15 .33 ± .10 .35 ± .11

MNIST: N = 60, 000. Mini-batch training.

Airline: N = 2, 127, 068. Mini-batch training.

Why does ADF perform well on the MNIST and Airline datasets?
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MNIST: Model Complexity vs. Number of Instances

ADF only performs well when the number of instances is very large or

when the model considered is simple.
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Conclusions

I It is possible to use stochastic gradients in expectation
propagation to learn the model hyper-parameters.

I This enables using expectation propagation for
approximate inference in very large datasets.

I The memory cost scales with N , since we have to store in
memory the parameters of each approximate factor.

I Stochastic expectation propagation solves this problem
without deteriorating the prediction performance!

I SEP is similar to EP in all regimes. ADF only when the
number of instances is large and the model is small.
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Thank you for your attention!
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