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Minibatch-Based	Algorithms	

•  Many	ML/stat	algorithms	(e.g.,	gradient	descent,	Gibbs	
sampling,…)	iterate	between	
–  opera%ons	involving	all	data	
–  upda%ng	parameters	

•  Costly	for	large	data	/	infeasible	for	streaming	data	

•  Common	approach	for	scalability:		
–  subsample	data	à	noisy	opera%on	
–  noisy	update	of	parameters	

Stochastic variational inference

SUBSAMPLE 
DATA

INFER 
LOCAL 

STRUCTURE

UPDATE 
GLOBAL 

STRUCTURE

1 A generic class of models

2 Classical mean-field variational inference

3 Stochastic variational inference

4 Extensions and open issues

(Hoffman et al., 2013)

Not	appropriate	for		
dependent	data	



Hidden	Markov	Models	(HMMs)	
discrete state sequence 

observations 

transition probabilities, 
observation parameters 



p(y,x, ✓) = p(✓)⇡(x1)
TY

t=2

p(xt | xt�1, ✓A)p(yt | xt, ✓�)

• Why	not	just	subsample	observa%ons	independently?	

• Cannot	learn	transi%on	structure	

Minibatches	for	HMMs	



• How	about	sampling	subchain?	

• Do	we	just	sever	dependencies	between	subchains	and	
analyze	separately?	

Minibatches	for	HMMs	



Large	Collec%ons	of	Short	Chains	

...

Johnson	and	Willsky,		
ICML	2014	

Hughes	et	al.,		
NIPS	2015	



One	Long	Chain	



Human	Chroma%n	Segmenta%on	

•  Chromosome	data	set	from	the	ENCODE	project	
–  ENcyclopedia	Of	DNA	Elements	

•  12	dimensional	observa%ons	
•  Goal:		segment	sequences	

T	=	250	million	



BATCH	LEARNING	FOR	HMMs	
A	quick	review	



Batch	Learning	for	HMMs	

•  Use	current					to	form	local	state	beliefs:	
–  Propagate	info	forwards	to	form	 p(y1, . . . , yt, xt)

✓
↵t =

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jp(xt+1 = k | xt = j)



�t = p(yt+1, . . . , yT | xt)
•  Use	current					to	form	local	state	beliefs:	

–  Propagate	info	backwards	

Batch	Learning	for	HMMs	

✓
�t =

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)p(xt+1 = j | xt = k)�t+1,k



Batch	Learning	for	HMMs	

•  Combine	to	form	smoothed	local	state	belief:	

p(xt | y1, . . . , yT , ✓)



•  Given	local	beliefs,	update	global	parameter	

Batch	Learning	for	HMMs	

T	=	250	million	

Issue:	Cost	is	O(K2T)	per	global	update!	
	

Costly	when	using	uninformed	ini%aliza%ons		
or	observa%ons	are	redundant	



MINIBATCH	LEARNING	FOR	HMMs?	
Issues	and	solu%ons	



• Form	local	beliefs															 	 		

Minibatch	Inference	for	HMMs	
q(xt)q(xt�1) q(xt+1)info	 info	

à	perform	global	update	

Local	forward	message	 Local	backward	message	



Harnessing	Memory	Decay	

Do we expect     to influence                  ? 

True beliefs 

Approximate 
beliefs 



Buffering	Subchains	

? 

Local	subchain		
marginal	

Full	data	marginal	

Check	that	subchain	marginals	are	approximated	well:	



Buffering	Subchains	

Local	subchain	
marginal	

Full	data	marginal	

? 
Check	that	subchain	marginals	are	approximated	well:	



? 
Check	that	subchain	marginals	are	approximated	well:	

Local	subchain	
marginal	

Full	data	marginal	

Buffering	Subchains	
	

–	Only	need	limited	buffer	
	
	

–	Complexity	is	now	O(K2Lbuffer)	per	iteraNon	
	

Large	savings	for	L+buffer	<<	T	
	

–	Similar	idea	as	Splash	BP	(parallelizing	BP)	
[Gonzalez,	et.	al.	2009]	

	

But,	uncertain	parameter	se8ng	here	
	
	



Buffering	for	Learning	

q(✓)Buffer	size	depends	on	θ	



Buffering	in	Prac%ce	
•  We	do	not	actually	know	the	true	marginals	
•  Monitor	changes	in	approximate	subchain	beliefs:	

•  Chain	structuring	implies	that	only	endpoints	must	be	
checked	
	
	
	
	

•  During	buffer	expansions,	forward-backward	passes	
can	reuse	computa%ons	of	previous	buffer	



A	CASE	STUDY:	SVI-HMM	
Minibatch-based	varia%onal	Bayes	for	HMMs	



Varia%onal	Bayes	(VB)	

•  Approximate	posterior	with	varia%onal	distribu%on	

	

•  Minimize																							maximize	“ELBO”:	

•  Common	to	make	mean-field	assump%on:	

latent	variables	

parameters	

observa%ons	



L = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+
TX

i=1

E

q(xi) [ln p(yi, xi

|✓)]� E

q(xi) [ln q(xi

)]

VB	Example:	Mixture	Model	

… 

Maximize ELBO with coordinate-ascent 

cluster  
labels 

obs. 

cluster params 

… 

@L
@q(x)

= 0
@L

@q(✓)
= 0



SVI	Example:	Mixture	Model		
	
For	scalability,	stochas%c	varia%onal	inference	(SVI)	replaces	
global	coordinate	step	with	stochas:c	gradient	step	
[Hoffman,	et.	al.	2013]	

… cluster  
labels 

obs. 

cluster params 

… 

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
E

q(xs) [ln p(ys, xs

|✓)]� E

q(xs) [ln q(xs

)]
�

As	if	we	saw	obs.		
T	%mes	

1. Sample	observa%on	
uniformly	at	random	

2. Form	noisy,	unbiased	
ELBO:	



SVI	Example:	Mixture	Model	

… cluster  
labels 

obs. 

cluster params 

… 

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
E

q(xs) [ln p(ys, xs

|✓)]� E

q(xs) [ln q(xs

)]
�

3. Take	standard	
coordinate	step	for	xS	

4. Take	stochas%c	natural	
gradient	step	for	θ	

5.  Iterate	

@Ls

@q(xs)
= 0

w(t) = w(t�1) + ⇢tr̃wLS

Hyperparams	for	q(θ)	



Varia%onal	Inference	for	HMMs	

Use	structured	mean-field	approxima%on:	
p(x1, x2, . . . , xT , ✓ | y1, y2 . . . , yT ) ⇡ q(x1, x2, . . . , xT )q(✓)



SVI	for	HMMs	

q(✓)
w(t) = w(t�1) + ⇢tr̃wLS

Stochas%c	natural	
gradient	step:	 q(x)

Func%on	of	

	
	

(Approx)	coordinate	
ascent	step:	

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jAj,k

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)Ak,j�t+1,k

Func%on	of	
q(✓)

Foti, Xu, Laird, Fox, NIPS 2014 



Differences	from	i.i.d.	Case	

•  Minibatches	are	correlated	
– Data	in	one	is	not	independent	of	data	in	another	

•  Minibatch	marginals	≠	batch	marginals	
–  Impact	of	latent	chain	
– Mi%gated	by	buffering	



Correlated	Minibatches	
•  Pretend	we	have	exact	local	distribu%on															

•  Typical	arguments	for	convergence	to	local	mode	rely	on	
unbiased	+	independent	noisy	gradients	[c.f.,	Booou	1998,	Hoffman	2013]	

–  Our	SGs	are	dependent	since	subchains	are	correlated	
•  Using	[Polyak	and	Tsypkin	1973],	unbiasedness	suffices	for	
convergence	of		

As	if	we	had	run	batch	
forward-backward	

	

w(t) = w(t�1) + ⇢tr̃wLS



Effect	of	Approximated	Marginals	

For					sufficiently	small	(sufficiently	long	buffer)	
–  Approximate	marginals	“close	enough”	to	true	marginals	
–  Noisy	gradient	in	same	half-plane	as	true	gradient	

	
	

itera%ve	algorithm	converges	to	local	mode	of	ELBO	

Foti, Xu, Laird, Fox, NIPS 2014 

SVI-HMM	iterates:		
	buffer	minibatches	to	approx	q(x)								update	q(Θ)	

coordinate	ascent	step	 stochas:c	
(natural)	gradient	step	

✏



Experiments	

•  Synthe%c	data:	
– Diagonally	Dominant:		Long	memory	chain	with	
large	self-transi%ons	

– Reversed	Cycles:		Two	overlapping	cycles	with	
opposite	direc%ons	

•  Human	chromaNn	applicaNon	



Minibatch	consists	of	M	subchains	each	of	length	L	

Minibatch	of	Subchains	



Diagonally	Dominant	
•  8	latent	states	
•  2d	Gaussian	
emissions	

•  High	auto-correla:on		
è	few	long	subchains		
					converge	slowly	
					(small	M,	large	L)	

•  Emissions	iden:fiable	
	è	many	small	subchains		
							perform	beoer	
							(large	M,	small	L)		
	



Reversed	Cycles	
• 8	latent	states	
• 2d	Gaussian	emissions	

•  Emission	distribu:ons	overlap	

•  Direc:on	of	cycles	important	to	
iden%fy	states	

§  Singleton	observa%ons	insufficient	
§  Without	buffering,	need	L	>	3	to	

learn	effec%vely	

•  Longer	subchains	more	likely	to	
capture	structure	
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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1Other parameter settings were explored.
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w/	buffer	

Subchain	Buffering	
L=3 L=7 L=21 

w/o	buffer	

batch	
VB	



•  Chromosome	data	
from	ENCODE	project	

•  12	dimensional	
observa%ons	

•  Goal:		segment	
sequences	

•  T	=	250	million	

•  [Hoffman	et.	al.	2012]	used	dynamic	Bayesian	network		
§  Broke	sequence	into	pieces	to	perform	inference	via	EM	
§  Severs	long-range	dependencies	

• Adap%ve	subsampling	on	HMM	(simpler	model)	
				Run%me	=	days	

Human	Chroma%n	Segmenta%on	

Run%me	=	under	1	hr	

•  Lower	FDR	of	promoters	

•  Simpler	model	
•  Uses	all	of	the	data	



BNP	and	Other	Extensions	

•  Presented	finite	HMM	case,		
but	ideas	could	generalize	to:	
–  Nonparametric	HMMs	
–  DBN	and	MRF	models	

•  Applica%ons	to:		
–  Large	spa%al	fields	
–  Spa%o-temporal	data,	etc.	



WHAT	ABOUT	STREAMING	DATA?	
Issues,	solu%ons,	and	more	issues…	



What	if	data	arrive	without	bound?	

Oven,	not	just	large	dataset,	but	streaming	

…	



Assumed	Density	Filtering	

Interested	in	
– Assume	we	have	
–  Incorporate	new	data	
–  Project	onto	tractable	family	

Cycling	through	data	mul%ple	%mes	results	in	the	
expectaNon	propagaNon	algorithm.	

p(✓|x1:n)
qn�1(✓) ⇡ p(✓|x1:n�1)

qn�1(✓)

p̂(✓|x1:n)

qn(✓)

p̂(✓|x1:n�1)

project	



Explored	ADF	for	BNP	Mixture	Models	
Bayesian	nonparametrics	well	suited	to	streaming	case	
since	model	complexity	can	adapt	

–  Exis%ng	approaches	only	for	the	Dirichlet	process	(DP)	
– We	cast	DP	approach	as	ADF,	and	extend	to	more	flexible	
class	of	normalized	random	measures	(NRMs)	

Generate	
observa%ons	

⇡
…	

cluster	#	

weights	
drawn	ind.	

Lévy	
Measure	

…	
cluster	#	

⇡

T
normalize	⇡

Tank, Foti, Fox, AISTATS 2015 



ADF	for	NRM	Mixture	Models	

p(z1:n, ✓|x1:n) / p(✓)
nY

i=1

p(xi|zi, ✓)p(zi|z1:i�1)

Posterior	of	n	data	points	can	be	wrioen	as	a	product	of	factors:	

	likelihood	factor:	p(xi|zi, ✓) p(zi|z1:i�1)	predic%ve	factor:	

Itera%vely	project	onto	factorized	family				Qn = {q; q =
nY

i=1

q(zi)
1Y

k=1

q(✓k)}

1.		Incorporate	predic%ve	factor	via	ADF:	

p(zn+1|z1:n)

qpr(z1:n+1, ✓)
Qn+1

q̂n(z1:n, ✓) p(zn+1|z1:n)q̂n(z1:n, ✓)
project	

predict	

tX

i=1

qt(zi = k)
Only	relies	on	summaries	of	soK-
assignments,	rather	than	full	history																																		

BNP	predic%ve	distribu%on	



ADF	for	NRM	Mixture	Models	

2.		Incorporate	likelihood	via	second	ADF	step:		

p(z1:n, ✓|x1:n) / p(✓)
nY

i=1

p(xi|zi, ✓)p(zi|z1:i�1)

Posterior	of	n	data	points	can	be	wrioen	as	a	product	of	factors:	

	likelihood	factor:	p(xi|zi, ✓) p(zi|z1:i�1)	predic%ve	factor:	

qpr(z1:n+1, ✓)

p(xn|zn, ✓)

p(xn|zn, ✓)qpr(z1:n+1, ✓)
Qn+1

Itera%vely	project	onto	factorized	family				Qn = {q; q =
nY

i=1

q(zi)
1Y

k=1

q(✓k)}

q̂n+1(z1:n+1, ✓)
project	

predict	

Typically	intractable,	so	replace	
with	VB	update	(reverse	KL)	

Similar	to	what’s	suggested	in	Broderick	et	al.	2013	(SVB)	



Online	Document	Clustering	

NYT	corpus	(N	=	266k	documents):	
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Let Sk =

PN
i=1 q̂i(zik) be the total weights assigned to cluster k and p̂k =

SkPKN
j=1 Sj

. Figure 2 plots the

sorted p̂ks computed after a full pass for both ADF-IG and ADF-DP. The plots are similar for the large and
medium sized clusters but diverge for the smaller clusters; the inferred model from the IG both infers more
clusters and places comparatively more mass on these smaller clusters than that of the DP.

Table 1: Most probable words and their respective probabilities for the 4 most prevalent topics.

Topic 1 Topic 2 Topic 3 Topic 4
athletes (0.0083) merger (0.0036) reform (0.0031) quarterback (0.0045)
weight (0.0075) revenue (0.0033) conservative (0.0026) yankees (0.0045)

exercise (0.0068) shares (0.0031) senator (0.0024) scored (0.0043)
steroid (0.0055) cable (0.0031) parties (0.0022) pitcher (0.0038)

supplement (0.0049) businesses (0.0029) supporter (0.0022) offense (0.0037)

Table 2: Most probable words and their respective probabilities for the 4 most prevalent topics.

Topic 1 Topic 2 Topic 3 Topic 4
athletes (.83) merger (.36) reform (.31) quarterback (.45)
weight (.75) revenue (3.3) conservative (.26) yankees (.45)

exercise (.68) shares (.31) senator (.24) scored (.43)
steroid (.55) cable (.31) parties (.22) pitcher (.38)

supplement (.49) businesses (.29) supporter (.22) offense (.37)

Figure 2: Log-log plot of variational cluster weights in decreasing order.
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Some	challenges…	

Itera%ng	VB	steps	leads	to	more	and	more	
concentrated	beliefs	

–  BNP	adapts	model	capacity	(i.e.,	new	clusters),	which	
allows	one	to	con%nue	learning	

–  Don’t	need	to	observe	all	clusters/modes	in	ini%al	batches	
–  Harder	in	HMM	case	because	you	have	“clusters”	and	
transi%ons	between	them…oven	dwell	in	one	for	a	while	

Theis	&	Hoffman	(2015)		trust	region	approach	can	help	



Summary	
•  Stochas%c	varia%onal	inference	for	handling	
dependent	observa:ons	
–  Harness	memory	decay	to	form	local	beliefs	on	buffered	subchains	
–  Bounding	error	in	approx.,	can	prove	convergence	of	itera%ve	algorithm	

•  Demonstrated	on	large	genomics	dataset	where	
batch	methods	are	infeasible	

•  Discussed	promising	approaches	to	streaming	case,	
and	challenges	for	%me	series	data	


