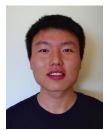


Variational Inference for Large-Scale and Streaming Sequential Data

Emily Fox

Nick Foti

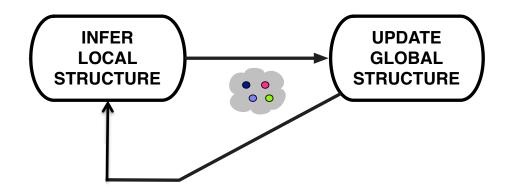
Alex Tank



Jason Xu

Dillon Laird

Minibatch-Based Algorithms



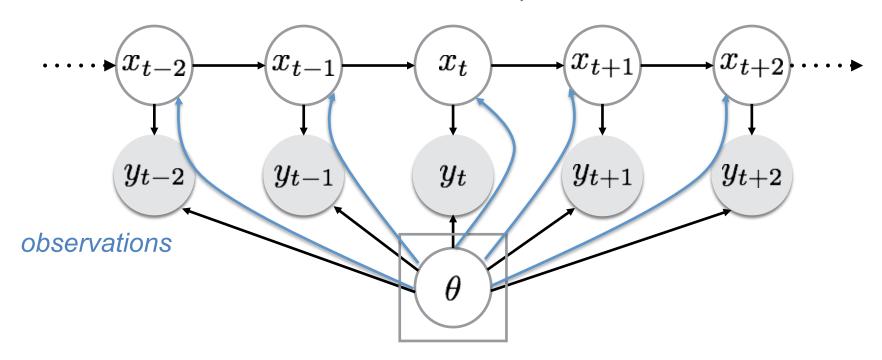
- Many ML/stat algorithms (e.g., gradient descent, Gibbs sampling,...) iterate between
 - operations involving all data
 - updating parameters

Not appropriate for dependent data

- Costly for large data / infeasible for streaming data
- Common approach for scalability:
 - subsample data → noisy operation
 - noisy update of parameters

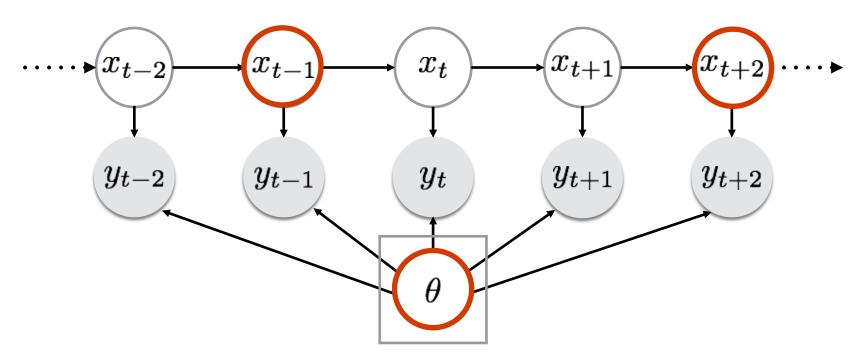
Hidden Markov Models (HMMs)

discrete state sequence



transition probabilities, observation parameters

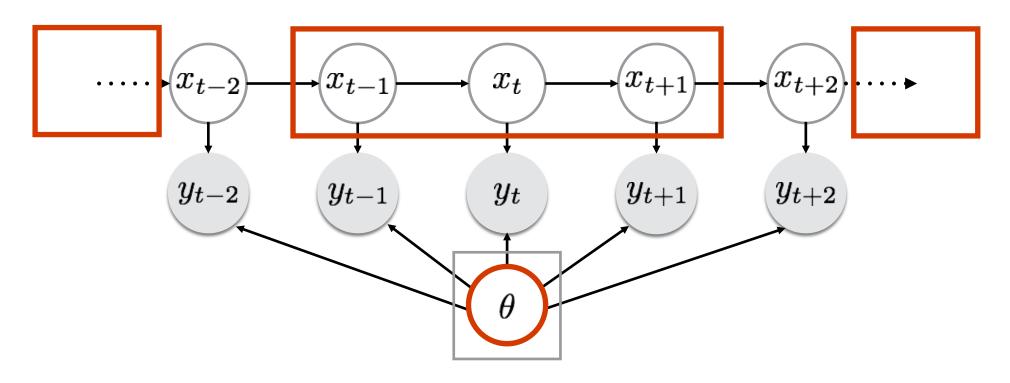
Minibatches for HMMs



- Why not just subsample observations independently?
- Cannot learn transition structure

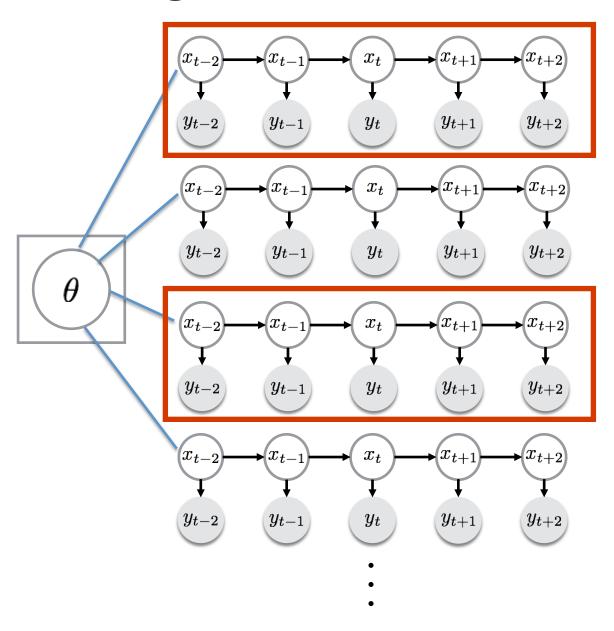
$$p(\mathbf{y}, \mathbf{x}, \theta) = p(\theta)\pi(x_1) \prod_{t=2}^{T} p(x_t \mid x_{t-1}, \theta_A) p(y_t \mid x_t, \theta_\phi)$$

Minibatches for HMMs



- How about sampling *subchain*? $x^S = (x_{t-L}, \dots, x_t, \dots, x_{t+L})$
- Do we just sever dependencies between subchains and analyze separately?

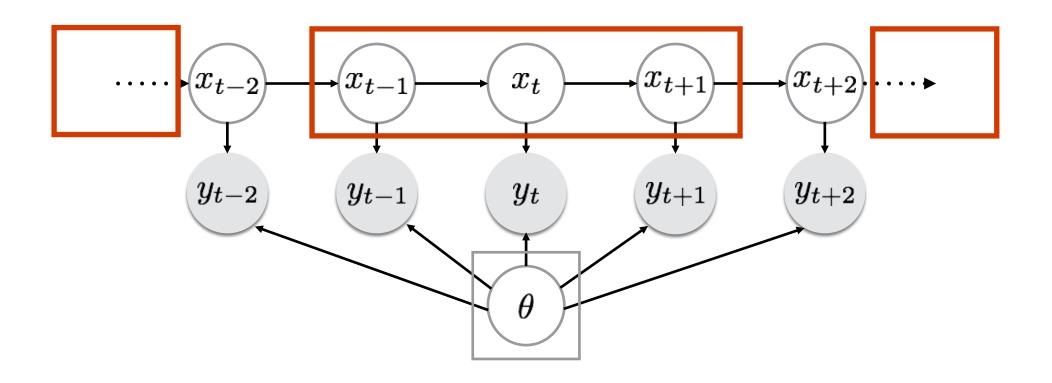
Large Collections of Short Chains



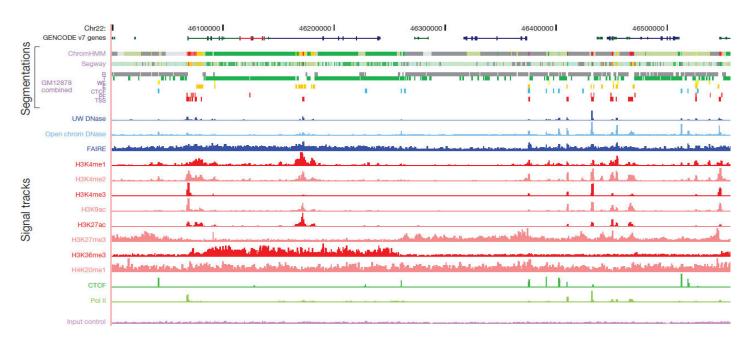
Johnson and Willsky, ICML 2014

Hughes et al., NIPS 2015

One Long Chain



Human Chromatin Segmentation



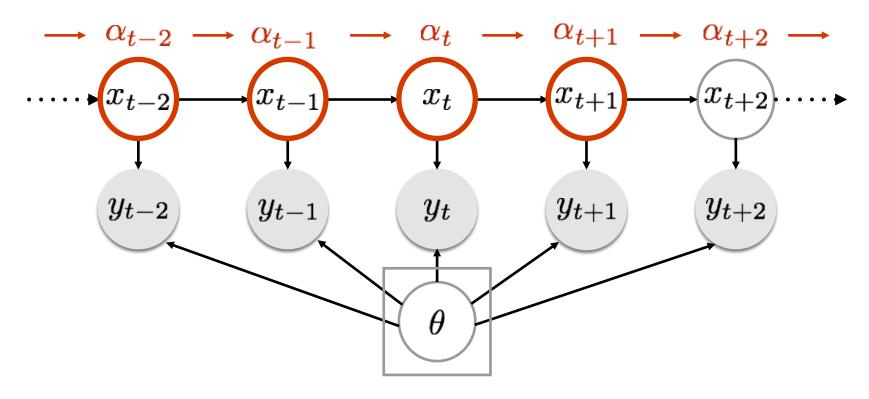
- Chromosome data set from the ENCODE project
 - ENcyclopedia Of DNA Elements
- 12 dimensional observations

T = 250 million

Goal: segment sequences

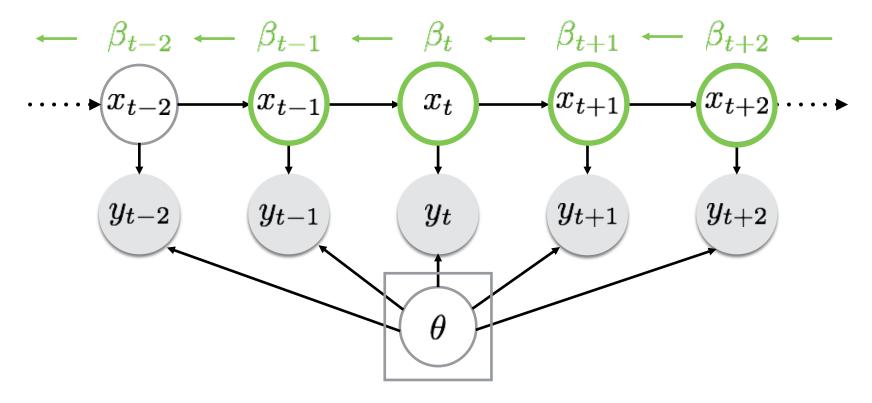
BATCH LEARNING FOR HMMs

A quick review



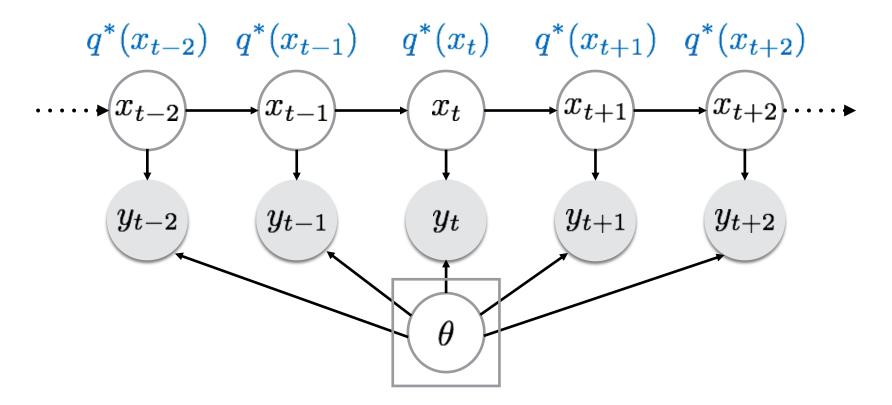
- Use current θ to form local state beliefs:
 - Propagate info forwards to form $\alpha_t = p(y_1, \dots, y_t, x_t)$

$$\alpha_{t+1,k} = p(y_{t+1} \mid x_{t+1} = k) \sum_{j=1}^{K} \alpha_{t,j} p(x_{t+1} = k \mid x_t = j)$$



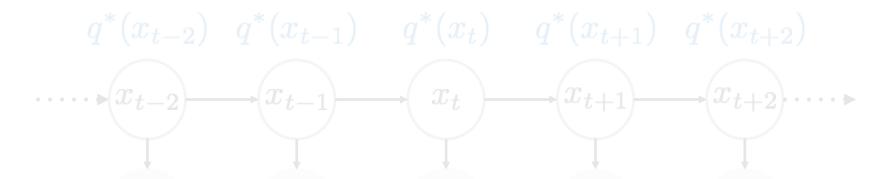
- Use current θ to form local state beliefs:
 - Propagate info backwards $\beta_t = p(y_{t+1}, \dots, y_T \mid x_t)$

$$\beta_{t,k} = \sum_{j=1}^{K} p(y_{t+1} \mid x_{t+1} = j) p(x_{t+1} = j \mid x_t = k) \beta_{t+1,k}$$



Combine to form smoothed local state belief:

$$p(x_t \mid y_1, \dots, y_T, \theta)$$



Issue: Cost is $O(K^2T)$ per global update!

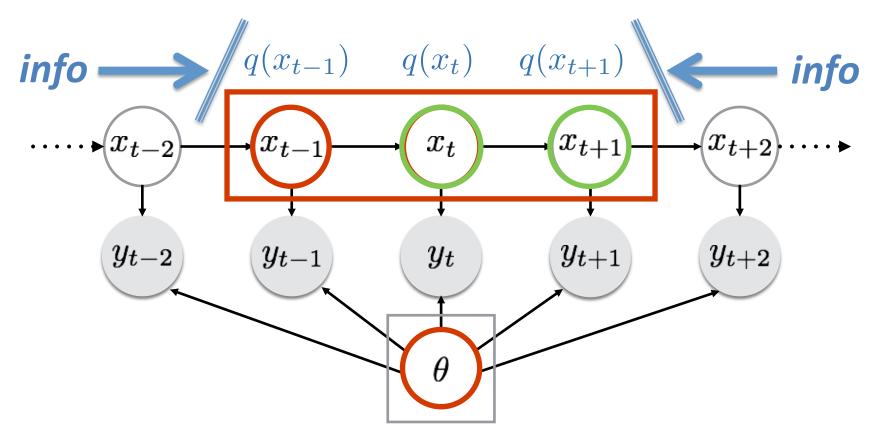
Costly when using uninformed initializations or observations are redundant

• Given local beliefs, update global parameter

MINIBATCH LEARNING FOR HMMs?

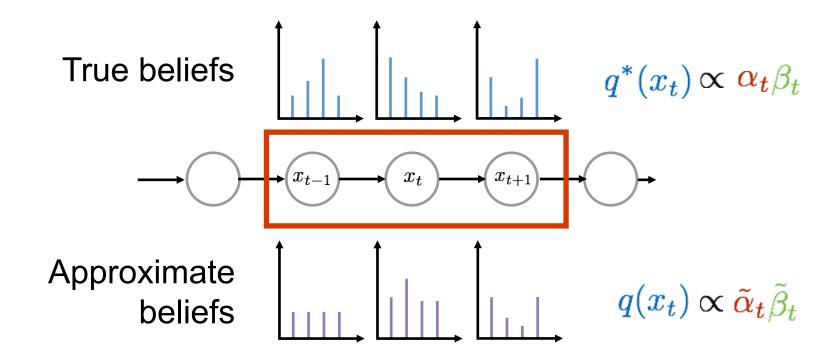
Issues and solutions

Minibatch Inference for HMMs



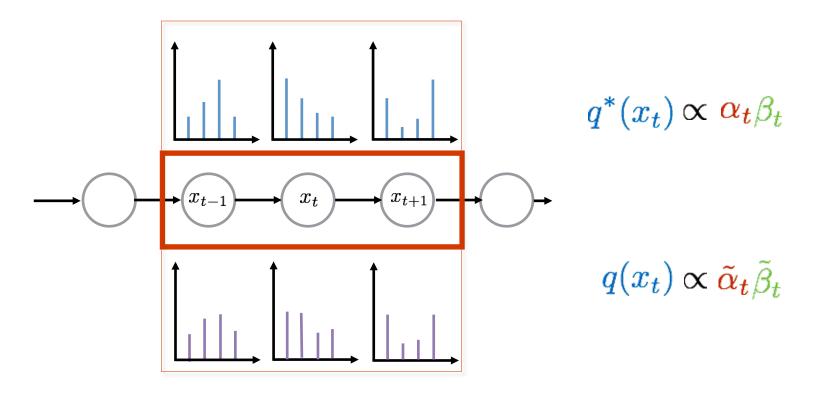
• Form local beliefs $q(x_t) \propto \tilde{\alpha}_t \tilde{\beta}_t$ \rightarrow perform global update Local forward message Local backward message

Harnessing Memory Decay



Do we expect x_t to influence $x_{t+1,000,000}$?

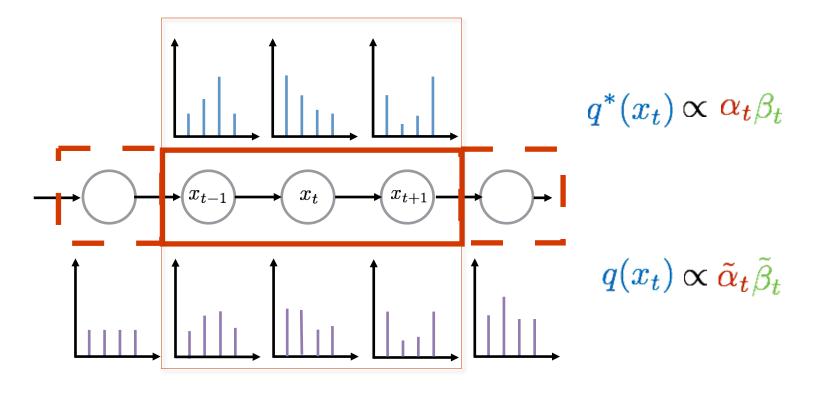
Buffering Subchains



Check that subchain marginals are approximated well:

$$\max_{i \in S} ||q(x_i) - q^*(x_i)|| < \epsilon$$
 ? Local subchain Full data marginal marginal

Buffering Subchains



Check that subchain marginals are approximated well:

$$\max_{i \in S} ||q(x_i) - q^*(x_i)|| < \epsilon$$
 ? Local subchain Full data marginal marginal

Buffering Subchains

Only need limited buffer

 $q^*(x_t) \propto \alpha_t \beta_t$

- Complexity is now $O(K^2L_{buffer}^{x_{t+1}})$ per iteration

Large savings for L+buffer << T

 $q(x_t) \propto \tilde{\alpha}_t \tilde{\beta}_t$

Similar idea as Splash BP (parallelizing BP)

[Gonzalez, et. al. 2009]

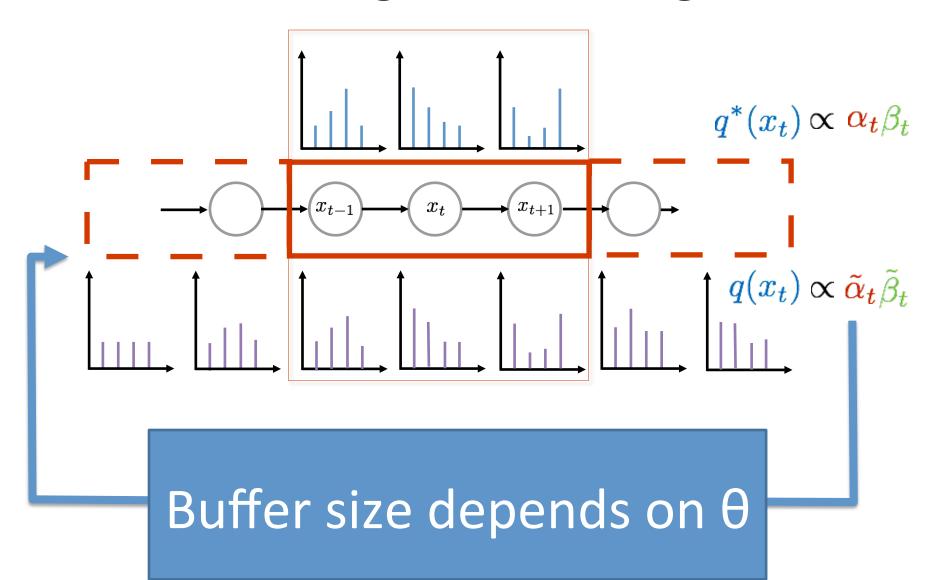
Check that subchain marginals are approximated well:

But, uncertain parameter setting here

Local subchain marginal

Full data margina

Buffering for Learning

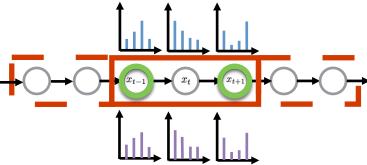


Buffering in Practice

- We do not actually know the true marginals
- Monitor changes in approximate subchain beliefs:

$$\max_{i \in S} ||q(x_i)^{\text{new}} - q(x_i)^{\text{old}}|| < \epsilon$$

Chain structuring implies that only endpoints must be checked



 During buffer expansions, forward-backward passes can reuse computations of previous buffer

A CASE STUDY: SVI-HMM

Minibatch-based variational Bayes for HMMs

Variational Bayes (VB)

Approximate posterior with variational distribution

$$p(x,\theta|y) = \frac{p(y|x,\theta)p(x,\theta)}{p(y)} \approx q(x,\theta)$$
 | latent variables | observations

• Minimize $\mathrm{KL}(q||p) \leftrightarrow \mathrm{maximize}$ "ELBO":

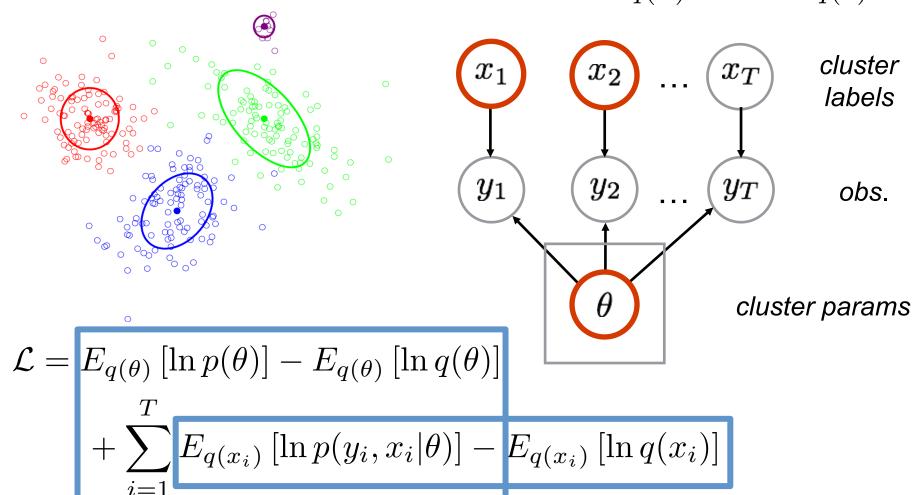
$$\mathcal{L}(q) = \mathbb{E}_q[\log p(y, x, \theta)] - \mathbb{E}_q[\log q(x, \theta)] \le \log p(y)$$

Common to make mean-field assumption:

$$q(x,\theta) = q(x)q(\theta)$$

VB Example: Mixture Model

Maximize ELBO with coordinate-ascent
$$\frac{\partial \mathcal{L}}{\partial q(\mathbf{x})} = 0 \longrightarrow \frac{\partial \mathcal{L}}{\partial q(\theta)} = 0$$



SVI Example: Mixture Model

For scalability, stochastic variational inference (SVI) replaces global coordinate step with *stochastic gradient* step

[Hoffman, et. al. 2013]

1. Sample observation uniformly at random

$$x^S \sim \mathrm{Unif}(x_1,\ldots,x_T)$$

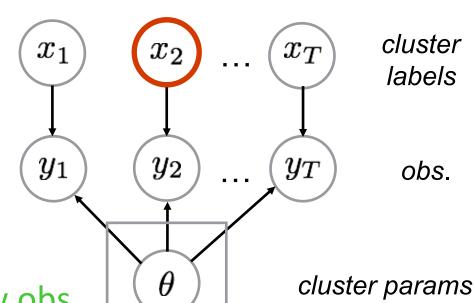
2. Form noisy, unbiased

ELBO: As if we saw obs.

T times

$$\mathcal{L}^{s} = E_{q(\theta)} \left[\ln p(\theta) \right] - E_{q(\theta)} \left[\ln q(\theta) \right]$$

$$+ T \cdot \left(E_{q(x_s)} \left[\ln p(y_s, x_s | \theta) \right] - E_{q(x_s)} \left[\ln q(x_s) \right] \right)$$



SVI Example: Mixture Model

3. Take standard coordinate step for x^{S}

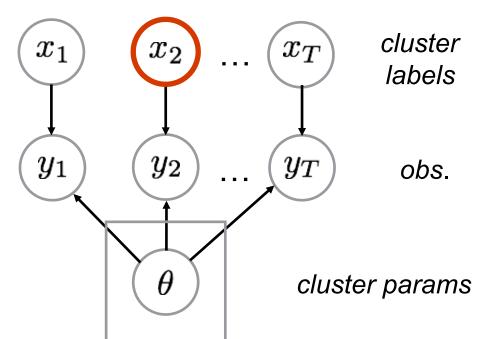
$$\frac{\partial \mathcal{L}^s}{\partial q(x_s)} = 0$$

4. Take stochastic natural gradient step for θ

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} + \rho_t \tilde{\nabla}_{\mathbf{w}} \mathcal{L}^S$$

 \sim Hyperparams for q(θ)

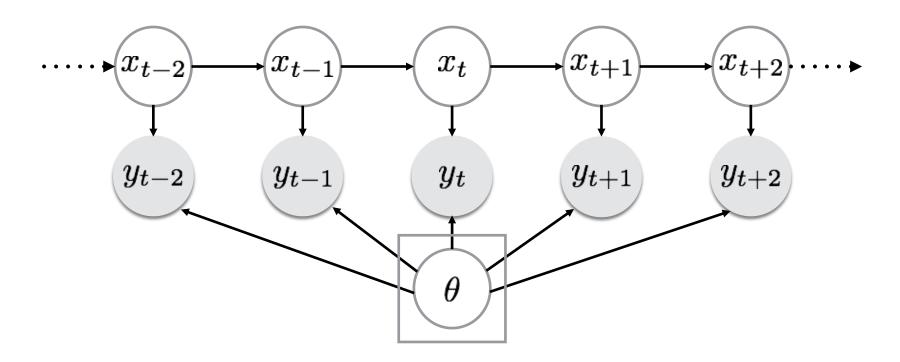
5. Iterate



$$\mathcal{L}^{s} = E_{q(\theta)} \left[\ln p(\theta) \right] - E_{q(\theta)} \left[\ln q(\theta) \right]$$

$$+ T \cdot \left[E_{q(x_s)} \left[\ln p(y_s, x_s | \theta) \right] - E_{q(x_s)} \left[\ln q(x_s) \right] \right]$$

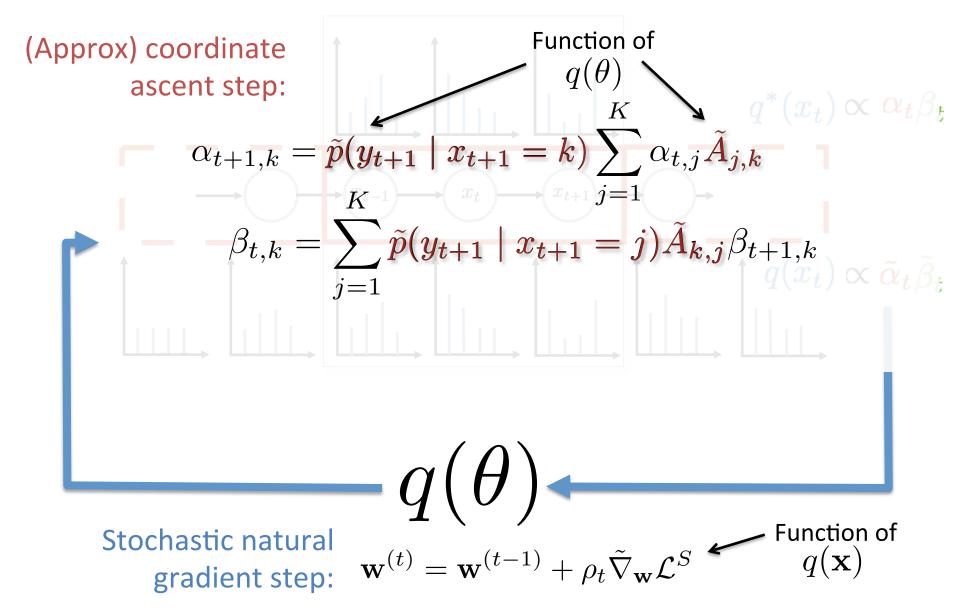
Variational Inference for HMMs



Use structured mean-field approximation:

$$p(x_1, x_2, \dots, x_T, \theta \mid y_1, y_2, \dots, y_T) \approx q(x_1, x_2, \dots, x_T)q(\theta)$$

SVI for HMMs



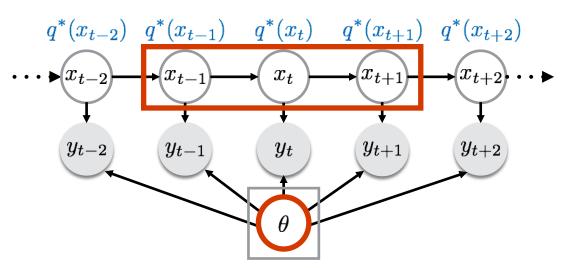
Foti, Xu, Laird, Fox, NIPS 2014

Differences from i.i.d. Case

- Minibatches are correlated
 - Data in one is not independent of data in another
- Minibatch marginals ≠ batch marginals
 - Impact of latent chain
 - Mitigated by buffering

Correlated Minibatches

Pretend we have exact local distribution



 $q^*(x^S)$

As if we had run batch forward-backward

- Typical arguments for convergence to local mode rely on unbiased + independent noisy gradients [c.f., Bottou 1998, Hoffman 2013]
 - Our SGs are dependent since subchains are correlated
- Using [Polyak and Tsypkin 1973], unbiasedness suffices for convergence of $\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} + \rho_t \tilde{\nabla}_{\mathbf{w}} \mathcal{L}^S$

Effect of Approximated Marginals

SVI-HMM iterates:

buffer minibatches to approx $q(x) \longleftrightarrow \text{update } q(\Theta)$ coordinate ascent step

stochastic
(natural) gradient step

For ϵ sufficiently small (sufficiently long buffer)

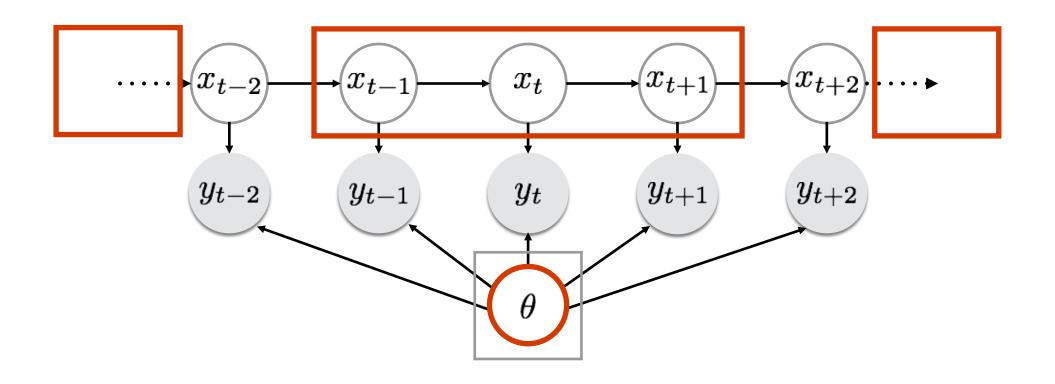
- Approximate marginals "close enough" to true marginals
- Noisy gradient in same half-plane as true gradient

iterative algorithm converges to local mode of ELBO

Experiments

- Synthetic data:
 - Diagonally Dominant: Long memory chain with large self-transitions
 - Reversed Cycles: Two overlapping cycles with opposite directions
- Human chromatin application

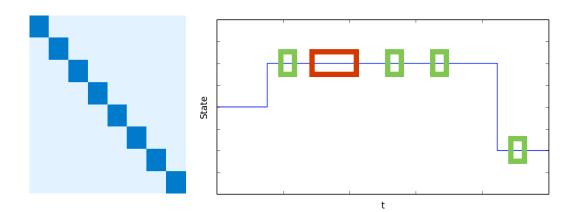
Minibatch of Subchains

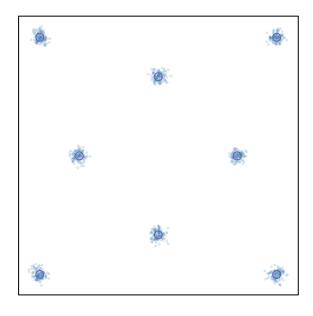


Minibatch consists of M subchains each of length L

Diagonally Dominant

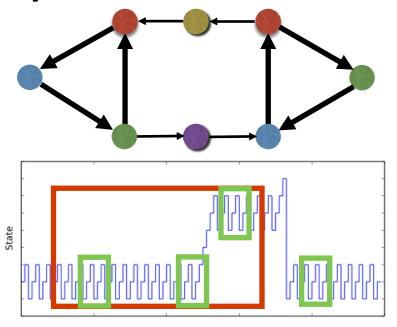
- 8 latent states
- 2d Gaussian emissions
- High auto-correlation
 - → few long subchains converge slowly (small M, large L)
- Emissions identifiable
 - → many small subchains perform better (large *M*, small *L*)

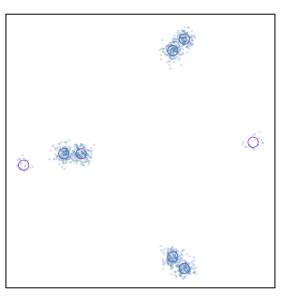




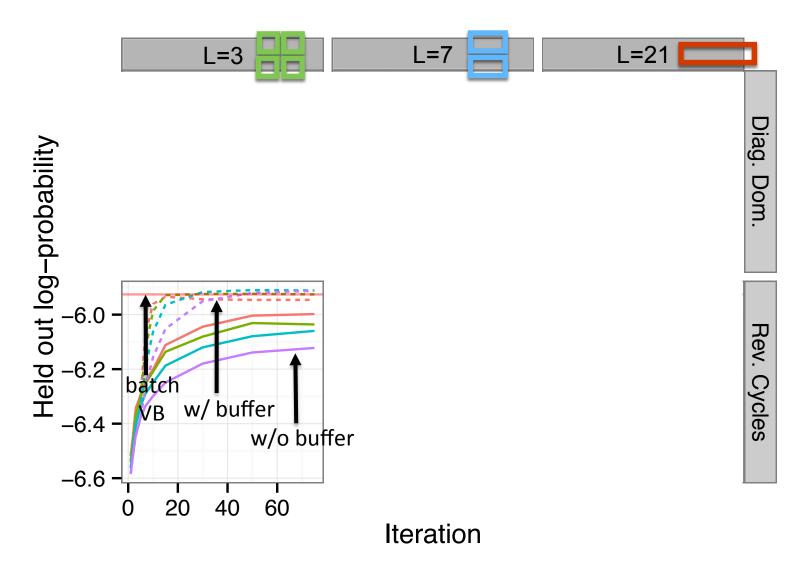
Reversed Cycles

- 8 latent states
- 2d Gaussian emissions
- Emission distributions overlap
- *Direction* of cycles important to identify states
 - Singleton observations insufficient
 - Without buffering, need L > 3 to learn effectively
- Longer subchains more likely to capture structure



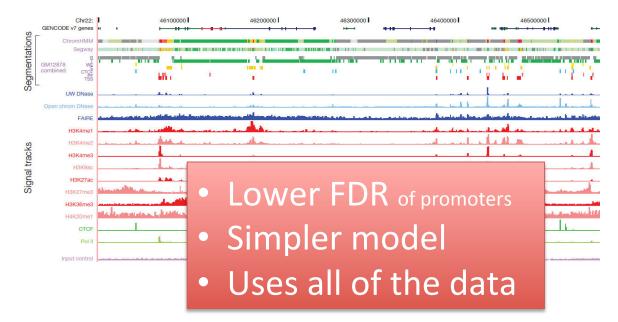


Subchain Buffering



Human Chromatin Segmentation

- Chromosome data from ENCODE project
- 12 dimensional observations
- Goal: segment sequences
- T = 250 million



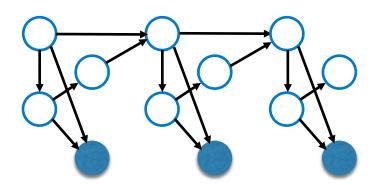
- [Hoffman et. al. 2012] used dynamic Bayesian network
 - Broke sequence into pieces to perform inference via EM
 - Severs long-range dependencies

Adaptive subsampling on HMM (simpler model)

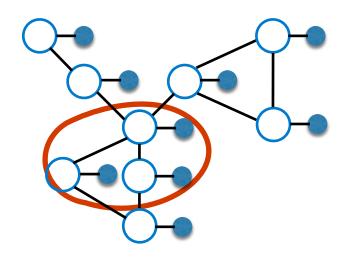
Runtime = under 1 hr

BNP and Other Extensions

- Presented finite HMM case, but ideas could generalize to:
 - Nonparametric HMMs
 - DBN and MRF models



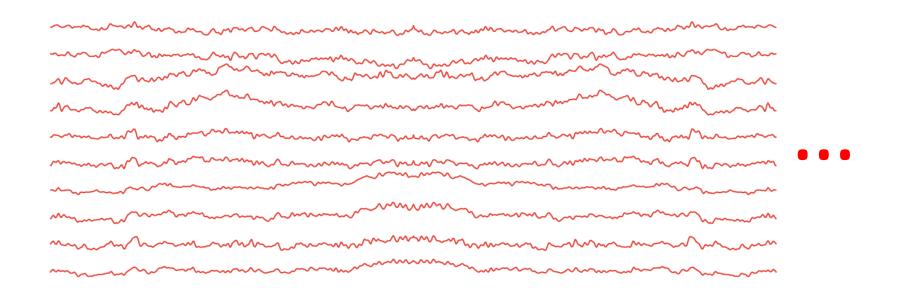
- Applications to:
 - Large spatial fields
 - Spatio-temporal data, etc.



WHAT ABOUT STREAMING DATA?

Issues, solutions, and more issues...

What if data arrive without bound?

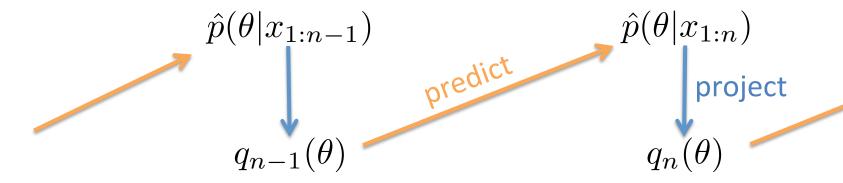


Often, not just large dataset, but streaming

Assumed Density Filtering

Interested in $p(\theta|x_{1:n})$

- Assume we have $q_{n-1}(\theta) \approx p(\theta|x_{1:n-1})$
- Incorporate new data $\hat{p}(\theta|x_{1:n}) = p(x_n|\theta)q_{n-1}(\theta)$
- Project onto tractable family $\arg\min_{q_n} \mathrm{KL}(\hat{p}||q_n)$

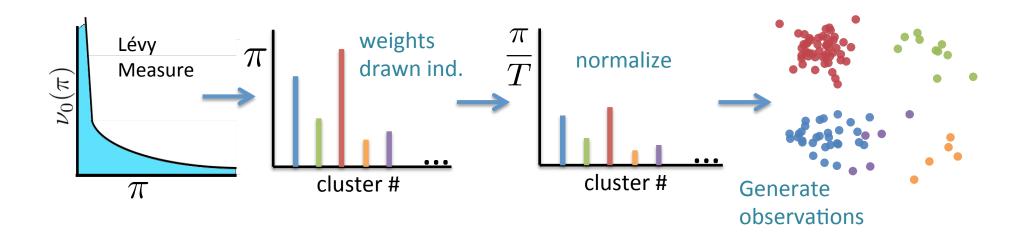


Cycling through data multiple times results in the expectation propagation algorithm.

Explored ADF for BNP Mixture Models

Bayesian nonparametrics well suited to streaming case since model complexity can adapt

- Existing approaches only for the Dirichlet process (DP)
- We cast DP approach as ADF, and extend to more flexible class of normalized random measures (NRMs)



ADF for NRM Mixture Models

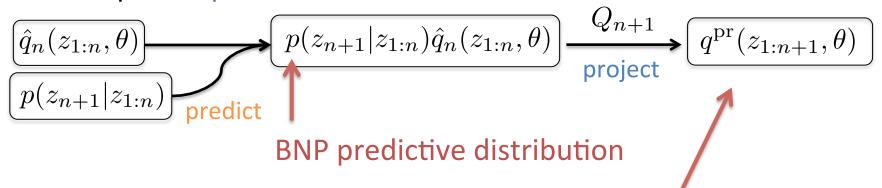
Posterior of n data points can be written as a product of factors:

$$p(z_{1:n}, \theta | x_{1:n}) \propto p(\theta) \prod_{i=1} p(x_i | z_i, \theta) p(z_i | z_{1:i-1})$$

likelihood factor: $p(x_i|z_i, \theta)$ predictive factor: $p(z_i|z_{1:i-1})$

Iteratively project onto factorized family $Q_n = \{q; q = \prod q(z_i) \prod q(\theta_k)\}$

1. Incorporate predictive factor via ADF:



Only relies on summaries of softassignments, rather than full history

$$\sum_{i=1}^{t} q_t(z_i = k)$$

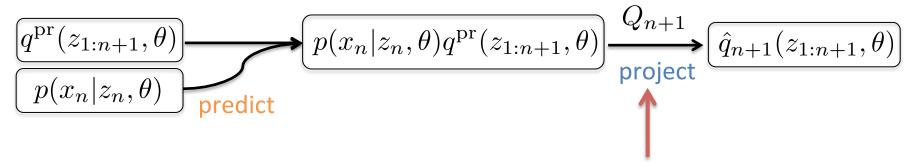
ADF for NRM Mixture Models

Posterior of n data points can be written as a product of factors:

$$p(z_{1:n},\theta|x_{1:n}) \propto p(\theta) \prod_{i=1} p(x_i|z_i,\theta) p(z_i|z_{1:i-1})$$
 likelihood factor: $p(x_i|z_i,\theta)$ predictive factor: $p(z_i|z_{1:i-1})$

Iteratively project onto factorized family $Q_n = \{q; q = \prod q(z_i) \prod q(\theta_k)\}$

2. Incorporate likelihood via second ADF step:

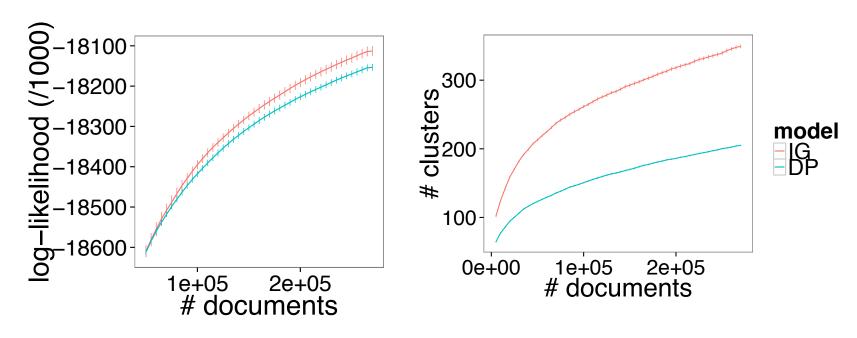


Typically intractable, so replace with VB update (reverse KL)

Similar to what's suggested in Broderick et al. 2013 (SVB)

Online Document Clustering

NYT corpus (N = 266k documents):



Top IG clusters after 1 epoch

Topic 1	Topic 2	Topic 3	Topic 4
athletes (.83)	merger (.36)	reform (.31)	quarterback (.45)
weight (.75)	revenue (3.3)	conservative (.26)	yankees (.45)
exercise (.68)	shares (.31)	senator (.24)	scored (.43)
steroid (.55)	cable (.31)	parties (.22)	pitcher (.38)
supplement (.49)	businesses (.29)	supporter (.22)	offense (.37)

Some challenges...

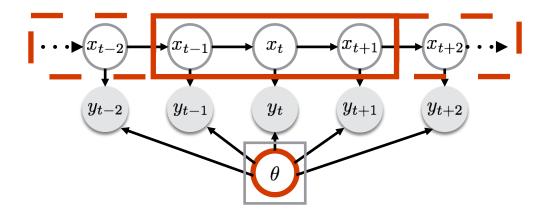
Iterating VB steps leads to more and more concentrated beliefs

- BNP adapts model capacity (i.e., new clusters), which allows one to continue learning
- Don't need to observe all clusters/modes in initial batches
- Harder in HMM case because you have "clusters" and transitions between them...often dwell in one for a while

Theis & Hoffman (2015) trust region approach can help

Summary

- Stochastic variational inference for handling dependent observations
 - Harness memory decay to form local beliefs on buffered subchains
 - Bounding error in approx., can prove convergence of iterative algorithm
- Demonstrated on large genomics dataset where batch methods are infeasible



 Discussed promising approaches to streaming case, and challenges for time series data