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Minibatch-Based Algorithms
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Many ML/stat algorithms (e.g., gradient descent, Gibbs
sampling,...) iterate between
— operations involving all data

— updating parameters dependent data

Costly for large data / infedsible for streaming data

Common appredch for scalability:
— subsample data = noisy operation
— noisy update of parameters



Hidden Markov Models (HMMs)

discrete state sequence

transition probabilities,
observation parameters



Minibatches for HMMs

e \Why not just subsample observations independently?

e Cannot learn transition structure
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Minibatches for HMMs
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e How about sampling subchain? z°
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e Do we just sever dependencies between subchains and

analyze separately?



Large Collections of Short Chains
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Johnson and Willsky,
ICML 2014
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One Long Chain
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Human Chromatin Segmentation
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e Chromosome data set from the ENCODE project
— ENcyclopedia Of DNA Elements

* 12 dimensional observations T = 250 million
* Goal: segment sequences



BATCH LEARNING FOR HMMs



Batch Learning for HMMs
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e Use current @ to form local state beliefs:

— Propagate info forwards to form «a¢ = p(y1, .- -, Y, Tt)
K

i1,k = PYit1 | Ter1 = k) Z@t,jp(sz—l =k |z =j)
j=1



Batch Learning for HMMs
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e Use current @ to form local state beliefs:
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Batch Learning for HMMs
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e Combine to form smoothed local state belief:
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Batch Learning for HMMs

Issue: Cost is O(K?T) per global update!

Costly when using uninformed initializations
or observations are redundant



MINIBATCH LEARNING FOR HMMs?



Minibatch Inference for HMMs
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e Form local beliefs g(z:) < &, 3, = perform global update

Local forward message Local backward message



Harnessing Memory Decay

True beliefs
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Do we expect z; to influence Z¢+1,000,000?



Buffering Subchains
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Check that subchain marginals are approximated well:
max |lg(zi) — ¢" (z5)l| <€ ?

Local subchain Full data marginal
marginal



Buffering Subchains
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Check that subchain marginals are approximated well:

Y — a¥(r. .
max|lg(z:) — q"(z3)|| <€ *

Local subchain

marginal
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Buffering Subchains

— Only need limited buffer

— Complexity is now O(K’L,, .. ) per iteration

Large savings for L+buffer << T

— Similar idea as Splash BP (parallelizing BP)
[Gonzalez, et. al. 2009]

But, uncertain parameter setting here



Buffering for Learning
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Buffering in Practice

We do not actually know the true marginals
Monitor changes in approximate subchain beliefs:

I?Eag ‘ Iq(mi)new . Q(CUZ’)OldH < €

Chain structuring implies that only endpoints must be
checked

During buffer expansions, forward-backward passes
can reuse computations of previous buffer



A CASE STUDY: SVI-HMM
Minibatch-based variational Bayes for HMMs



Variational Bayes (VB)

* Approximate posterior with variational distribution

parameters

Ol — 2
p(1 ; 9':19)

observations

y|z, 9)p($7 9)
P(y)

~ q(z, )

* Minimize KL(q||p) ¢ maximize “ELBO”:
L(q) = Eq[logp(y, z,0)] — Eqllog g(z,0)] < logp(y)

e Common to make mean-field assumption:
q(z,0) = q(z)q(0)



VB Example: Mixture Model

Maximize ELBO with coordinate-ascent
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SVI Example: Mixture Model

For scalability, stochastic variational inference (SVI) replaces
global coordinate step with stochastic gradient step
[Hoffman, et. al. 2013]

. 1 TT cluster
1. Sample observation labels
uniformly at random l l

% ~ Unif(z4,...,z7) Y1 < yf / yr obs.
2. Form noisy, unbiased L
ELBO: 7, cluster params

L2 = Eyopdnp(0)] — Eqp) [Inq(0)]
+ 1" (Eq(ws) Inp(ys, xs]0)] — Eq(x,) [IHQ(ZES)D



SVI Example: Mixture Model

3. Take standard

coordinate step for x°
0L®

- O
1 T cluster
Iq(s) O labels

4. Take stochastic natural

gradient step for 8 ! }
(t) (t—1) = g Y1 Y2 ) ...\ YT obs.
N

Hyperparams for q(0) \<>/
v, cluster params
5. Iterate

Lo =

Eq) Inp(0)] — Eqp [Inq(0

+ T (Eqa.) I pys, 2510)] + Ega,) I g(zs)])




Variational Inference for HMMs
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Use structured mean-field approximation:
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SVI for HMMs

(Approx) coordinate Function of
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Foti, Xu, Laird, Fox, NIPS 2014



Differences from i.i.d. Case

* Minibatches are correlated
— Data in one is not independent of data in another

* Minibatch marginals # batch marginals

— Impact of latent chain
— Mitigated by buffering



Correlated Minibatches

» Pretend we have exact local distribution ¢*(z°)

¢ (@i—2) ¢ (xe—1) g (@) ¢ (@e41) ¢ (Ti42) \
e $t2$t+2° e As if we had run batch
! ! forward-backward
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e Typical arguments for convergence to local mode rely on
unbiased + independent noisy gradients (., Bottou 1998, Hoffman 2013]

— Our SGs are dependent since subchains are correlated

* Using [Polyak and Tsypkin 1973], unbiasedness suffices for
convergence of w'¥ = wl=1 4 v, 5



Effect of Approximated Marginals

SVI-HMM iterates:

buffer minibatches to approx q(x) < update g(0)

coordinate ascent step stochastic
(natural) gradient step

For € sufficiently small (sufficiently long buffer)
— Approximate marginals “close enough” to true marginals
— Noisy gradient in same half-plane as true gradient

U

iterative algorithm converges to local mode of ELBO

Foti, Xu, Laird, Fox, NIPS 2014



Experiments

* Synthetic data:

— Diagonally Dominant: Long memory chain with
large self-transitions

— Reversed Cycles: Two overlapping cycles with
opposite directions

 Human chromatin application



Minibatch of Subchains

RS
-@ @A@A@J il |

Minibatch consists of M subchains each of




Diagonally Dominant

8 latent states

2d Gaussian
emissions

High auto-correlation
=>» few long subchains
converge slowly
(small M, large L)

Emissions identifiable

=» many small subchains
perform better
(large M, small L)

State




Reversed Cycles

e 8 |latent states

e 2d Gaussian emissions

e Emission distributions overlap

e Direction of cycles important to
identify states
= Singleton observations insufficient

=  Without buffering, need L >3 to
learn effectively

e Longer subchains more likely to
capture structure

State
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Subchain Buffering
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* Chromosomedata & 77l o T To o o o
from ENCODE project JJ Al W S ”-:"“.','..“""'"TTT
* 12 dimensional P—— — Li LLJ:
observations . - : ‘*%*“—:j
* Goal: segment R "

sequences * Simpler model
* T =250 million  Uses all of the data

e [Hoffman et. al. 2012] used dynamic Bayesian network

= Broke sequence into pieces to perform inference via EM

= Severs long-range dependencies — Runtime = days

e Adaptive subsampling on HMM (simpler model)
et

Runtime = under 1 hr



BNP and Other Extensions

* Presented finite HMM case,
but ideas could generalize to:

— Nonparametric HMMs
— DBN and MRF models

* Applications to:
— Large spatial fields
— Spatio-temporal data, etc.



WHAT ABOUT STREAMING DATA?
Issues, solutions, and more issues...



What if data arrive without bound?

Often, not just large dataset, but streaming



Assumed Density Filtering

Interested in p(0|z1.,,)
— Assume we have qn—1(0) = p(0|T1.n—1)
— Incorporate newdata p(0|z1.,) = plx,|0)q,—1(0)
— Project onto tractable family argmin KL(pl||q,)

dn

ﬁ(‘ﬂxl:n—l) ﬁ(e‘xln)
l lproject
Gn—1(0) qn(0)

Cycling through data multiple times results in the
expectation propagation algorithm.



Explored ADF for BNP Mixture Models

Bayesian nonparametrics well suited to streaming case
since model complexity can adapt

— Existing approaches only for the Dirichlet process (DP)

— We cast DP approach as ADF, and extend to more flexible

class of normalized random measures (NRMs)

Lévy
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Tank, Foti, Fox, AISTATS 2015



ADF for NRM Mixture Models

Posterior of n data points can be written as a product of factors:

p(21:n, 0|T1:0) o< p(O Hp ;| 2, 0)p(2ilz1:-1)
factor: p(wzlzz, ) predictive factor: p(z;|z1:i—1)

Iteratively project onto factorized family Q. ={gq=]]a(z) ] ¢(6x)}
= =1

1. Incorporate predictive factor via ADF:

~ ) ~ Qn 1 r

LQn(lena (9) p(zn—l—l |Z1:n)Qn(lena 0)] i >[qp (len—|—1, 9) }
’ project

[p(zn—l—l ‘len)

BNP predictive distribution
Only relies on summaries of soft- : B
: . Z q1(zi = k)

assignments, rather than full history | =




ADF for NRM Mixture Models

Posterior of n data points can be written as a product of factors:

p(Zl n7‘9|x1n ocp Hp $Z|Z7,7 Zz|zlz 1)
factor: p(wZIZZ, ) predictive factor: p(z;|z1:i—1)

Iteratively project onto factorized family Q. ={gq=]]a(z) ] ¢(6x)}
= =1

2. Incorporate via second ADF step:

- . Qn—l—l
[qp (Z1:m41, 9))7*[19(5%%, 0)¢”" (21:n41, 9)}—{%“ (21:n41, 9)}
S project
[p(ajn|zn,9) |

|

Typically intractable, so replace
with VB update (reverse KL)

Similar to what’s suggested in Broderick et al. 2013 (SVB)



Online Document Clustering

NYT corpus (N = 266k documents):
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Top IG clusters after 1 epoch

Topic 1 Topic 2 Topic 3 Topic 4
athletes (.83) merger (.36) reform (.31) quarterback (.45)
weight (.75) revenue (3.3) conservative (.26) yankees (.45)
exercise (.68) shares (.31) senator (.24) scored (.43)
steroid (.55) cable (.31) parties (.22) pitcher (.38)

supplement (.49) | businesses (.29) supporter (.22) offense (.37)

model

B



Some challenges...

Iterating VB steps leads to more and more
concentrated beliefs

— BNP adapts model capacity (i.e., new clusters), which
allows one to continue learning

— Don’t need to observe all clusters/modes in initial batches
— Harder in HMM case because you have “clusters” and
transitions between them...often dwell in one for a while

Theis & Hoffman (2015) trust region approach can help



Summary

Stochastic variational inference for handling
dependent observations

— Harness memory decay to form local beliefs on buffered subchains
— Bounding error in approx., can prove convergence of iterative algorithm

 Demonstrated on large genomics dataset where
batch methods are infeasible
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* Discussed promising approaches to streaming case,
and challenges for time series data



