Incremental Variational Inference

Applied to Latent Dirichlet Allocation

Cédric Archambeau cedrica@amazon.com

Joint work with Beyza Ermiş (Bogazici University).

NIPS workshop on Advances in Approximate Bayesian Inference Montréal, December 2015.

• Abstract away algorithms (scalable & practical)

- Abstract away algorithms (scalable & practical)
 - Probabilistic programming language
 - Bayesian optimisation

- Abstract away algorithms (scalable & practical)
 - Probabilistic programming language
 - Bayesian optimisation
- Abstract away feature engineering

- Abstract away algorithms (scalable & practical)
 - Probabilistic programming language
 - Bayesian optimisation
- Abstract away feature engineering
- Abstract away memory constraints
- Abstract away network constraints
- Abstract away computing infrastructure

(Beal, 2003)

(Beal, 2003)

• The goal is to maximise the evidence: $p(\mathbf{X})$.

(Beal, 2003)

- The goal is to maximise the evidence: $p(\mathbf{X})$.
- Using Jensen's inequality, we get for any distribution $q_w(\mathbf{Z}, \theta)$:

$$\ln p(\mathbf{X}) = \ln \iint p(\mathbf{X}, \mathbf{Z}, \theta) \, d\mathbf{Z} \, d\theta$$

$$\geq \iint q_{\mathbf{w}}(\mathbf{Z}, \theta) \ln \frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q_{\mathbf{w}}(\mathbf{Z}, \theta)} \, d\mathbf{Z} \, d\theta$$

$$= \ln p(\mathbf{X}) - \mathrm{KL}[q_{\mathbf{w}}(\mathbf{Z}, \theta) || p(\mathbf{Z}, \theta | \mathbf{X})] \triangleq -\mathcal{F}(\mathbf{w}).$$

- The goal is to maximise the evidence: $p(\mathbf{X})$.
- Using Jensen's inequality, we get for any distribution $q_w(\mathbf{Z}, \theta)$:

$$\begin{aligned} \ln p(\mathbf{X}) &= \ln \iint p(\mathbf{X}, \mathbf{Z}, \theta) \ d\mathbf{Z} \ d\theta \\ &\geq \iint q_{\mathbf{w}}(\mathbf{Z}, \theta) \ln \frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q_{\mathbf{w}}(\mathbf{Z}, \theta)} \ d\mathbf{Z} \ d\theta \\ &= \ln p(\mathbf{X}) - \mathrm{KL}[q_{\mathbf{w}}(\mathbf{Z}, \theta) \| p(\mathbf{Z}, \theta | \mathbf{X})] \triangleq -\mathcal{F}(\mathbf{w}). \end{aligned}$$

• A tractable solution is found by assuming q_w factorises given the data:

$$q_{\mathbf{w}}(\mathbf{Z}, \boldsymbol{\theta}) = \prod_{n} q(\mathbf{z}_{n}; \mathbf{w}_{n}) \times \prod_{m} q(\boldsymbol{\theta}_{m}; \mathbf{w}_{m}).$$

Mean field variational inference (MVI)

$$\mathbf{w}_{n} \leftarrow \arg \max_{\mathbf{w}_{n}} \quad \langle \ln p(\mathbf{x}_{n} | \mathbf{z}_{n}, \boldsymbol{\theta}) \rangle - \mathrm{KL} \left[q(\mathbf{z}_{n}; \mathbf{w}_{n}) \| p(\mathbf{z}_{n}) \right],$$
$$\mathbf{w}_{m} \leftarrow \arg \max_{\mathbf{w}_{m}} \quad \sum_{n} \langle \ln p(\mathbf{x}_{n} | \mathbf{z}_{n}, \boldsymbol{\theta}) \rangle - \mathrm{KL} \left[q(\boldsymbol{\theta}_{m}; \mathbf{w}_{m}) \| p(\boldsymbol{\theta}_{m}) \right].$$

Mean field variational inference (MVI)

$$\begin{split} \mathbf{w}_n &\leftarrow \arg \max_{\mathbf{w}_n} \quad \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\theta}) \rangle - \mathrm{KL} \left[q(\mathbf{z}_n; \mathbf{w}_n) \| p(\mathbf{z}_n) \right], \\ \mathbf{w}_m &\leftarrow \arg \max_{\mathbf{w}_m} \quad \sum_n \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\theta}) \rangle - \mathrm{KL} \left[q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m) \right]. \end{split}$$

- Monotonic increase of the bound; converges to local maximum.
- Priors are conjugate to the likelihood; updates are similar to Gibbs.
- Batch method; not suitable for large data sets.
- Block-coordinate ascent.

Stochastic variational inference (SVI) (Hoffman, et al., NIPS 2010)

Let
$$\ell_n(\mathbf{w}) = \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\theta}) \rangle$$
:
 $\mathbf{w}_m \leftarrow \mathbf{w}_m + \rho_t \text{ arg max}_{\mathbf{w}_m} N \ell_n(\mathbf{w}) - \text{KL} [q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m)],$
where $\sum_t \rho_t = \infty$ and $\sum_t \rho_t^2 < \infty.$

Stochastic variational inference (SVI) (Hoffman, et al., NIPS 2010)

Let
$$\ell_n(\mathbf{w}) = \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\theta}) \rangle$$
:

 $\mathbf{w}_m \leftarrow \mathbf{w}_m + \rho_t \arg \max_{\mathbf{w}_m} N\ell_n(\mathbf{w}) - \mathrm{KL}\left[q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m)\right],$

where $\sum_t \rho_t = \infty$ and $\sum_t \rho_t^2 < \infty$.

- Noisy, but unbiased estimates of the gradients wrt w_m.
- Monotonic increase of bound is lost no sanity check
- Small memory footprint; sequential method.
- Requires adjusting the learning rate.
- Natural gradients wrt q_{wm}

Incremental variational inference (IVI)

Let $\ell_N(\mathbf{w}) = \sum_n \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \theta) \rangle$ and $\mathbf{s}(\mathbf{X}, \mathbf{Z}) = \sum_n \mathbf{s}_n(\mathbf{x}_n, \mathbf{z}_n)$ be the vector of sufficient statistics:

 $\mathbf{w}_m \leftarrow \arg \max_{\mathbf{w}_m} \ \ell_N(\mathbf{s}, \mathbf{w}) - \ell_n(\mathbf{s}_n, \mathbf{w}) + \ell_n(\mathbf{s}_n^*, \mathbf{w}) - \mathrm{KL}\left[q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m)\right].$

where $\mathbf{s}_n^*(\mathbf{x}_n, \mathbf{z}_n)$ is the new vector of sufficient statistics.

Incremental variational inference (IVI)

Let $\ell_N(\mathbf{w}) = \sum_n \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \theta) \rangle$ and $\mathbf{s}(\mathbf{X}, \mathbf{Z}) = \sum_n \mathbf{s}_n(\mathbf{x}_n, \mathbf{z}_n)$ be the vector of sufficient statistics:

 $\mathbf{w}_m \leftarrow \arg \max_{\mathbf{w}_m} \ \ell_N(\mathbf{s}, \mathbf{w}) - \ell_n(\mathbf{s}_n, \mathbf{w}) + \ell_n(\mathbf{s}_n^*, \mathbf{w}) - \mathrm{KL}\left[q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m)\right].$

where $\mathbf{s}_n^*(\mathbf{x}_n, \mathbf{z}_n)$ is the new vector of sufficient statistics.

- Monotonic increase of bound is recovered!
- Need for storing the sufficient statistics.
- Sequential, but maintains a batch estimate of s(X, Z).
- No parameters to tune.

Incremental variational inference (IVI)

Let $\ell_N(\mathbf{w}) = \sum_n \langle \ln p(\mathbf{x}_n | \mathbf{z}_n, \theta) \rangle$ and $\mathbf{s}(\mathbf{X}, \mathbf{Z}) = \sum_n \mathbf{s}_n(\mathbf{x}_n, \mathbf{z}_n)$ be the vector of sufficient statistics:

 $\mathbf{w}_m \leftarrow \arg \max_{\mathbf{w}_m} \ \ell_N(\mathbf{s}, \mathbf{w}) - \ell_n(\mathbf{s}_n, \mathbf{w}) + \ell_n(\mathbf{s}_n^*, \mathbf{w}) - \mathrm{KL}\left[q(\boldsymbol{\theta}_m; \mathbf{w}_m) \| p(\boldsymbol{\theta}_m)\right].$

where $\mathbf{s}_n^*(\mathbf{x}_n, \mathbf{z}_n)$ is the new vector of sufficient statistics.

- Monotonic increase of bound is recovered!
- Need for storing the sufficient statistics.
- Sequential, but maintains a batch estimate of s(X, Z).
- No parameters to tune.
- Can be interpretted as stochastic average gradient descent (SAG).

Relation to incremental EM

$$\ln p(\mathbf{X}) = \ln \iint p(\mathbf{X}, \mathbf{Z}, \theta) \, d\mathbf{Z} \, d\theta$$

$$\geq \iint q(\mathbf{Z})q(\theta) \ln \frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q(\mathbf{Z})q(\theta)} \, d\mathbf{Z} \, d\theta$$

$$= \ln p(\mathbf{X}) - \mathrm{KL}[q(\mathbf{Z})q(\theta) || p(\mathbf{Z}, \theta | \mathbf{X})] \triangleq -\mathcal{F}(\mathbf{w}).$$

• MVI updates can be re-written as follows:

$$\begin{split} q(\mathbf{z}_n; \mathbf{w}_n) &\propto \exp\left(\langle \ln p(\mathbf{s}_n | \boldsymbol{\theta}) \rangle\right), \\ q(\boldsymbol{\theta}_m; \mathbf{w}_m) &\propto \exp\left(\langle \ln p(\mathbf{s} | \boldsymbol{\theta}) \rangle_{\neg \boldsymbol{\theta}_m}\right) p(\boldsymbol{\theta}_m). \end{split}$$

Relation to incremental EM

$$\ln p(\mathbf{X}) = \ln \iint p(\mathbf{X}, \mathbf{Z}, \theta) \, d\mathbf{Z} \, d\theta$$

$$\geq \iint q(\mathbf{Z})q(\theta) \ln \frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q(\mathbf{Z})q(\theta)} \, d\mathbf{Z} \, d\theta$$

$$= \ln p(\mathbf{X}) - \mathrm{KL}[q(\mathbf{Z})q(\theta)||p(\mathbf{Z}, \theta|\mathbf{X})] \triangleq -\mathcal{F}(\mathbf{w}).$$

• MVI updates can be re-written as follows:

 $q(\mathbf{z}_n; \mathbf{w}_n) \propto \exp\left(\langle \ln p(\mathbf{s}_n | \boldsymbol{\theta}) \rangle\right),$ $q(\boldsymbol{\theta}_m; \mathbf{w}_m) \propto \exp\left(\langle \ln p(\mathbf{s} | \boldsymbol{\theta}) \rangle_{\neg \boldsymbol{\theta}_m}\right) p(\boldsymbol{\theta}_m).$

• IVI updates can be re-written as follows:

$$q(\mathbf{z}_n; \mathbf{w}_n) \propto \exp\left(\langle \ln p(\mathbf{s}_n^* | \boldsymbol{\theta}) \rangle\right), q(\boldsymbol{\theta}_m; \mathbf{w}_m) \propto \exp\left(\langle \ln p(\mathbf{s} - \mathbf{s}_n + \mathbf{s}_n^*, \boldsymbol{\theta}) \rangle_{\neg \boldsymbol{\theta}_m}\right).$$

Distributed version

Master

Distributed version

Distributed version

Latent Dirichlet allocation (LDA)

(Blei, et al., JMLR 2003)

Simple generative model for text, based on a bag-of-words representation:

Latent Dirichlet allocation (LDA)

Simple generative model for text, based on a bag-of-words representation:

Observations are word counts per document. LDA assumes an admixture model:

$$\mathbf{X} \in \mathbb{N}^{V \times D}$$
.

Latent Dirichlet allocation (LDA)

Simple generative model for text, based on a bag-of-words representation:

Observations are word counts per document. LDA assumes an admixture model:

$$\mathbf{X} \in \mathbb{N}^{V \times D}.$$

LDA infers a low-rank approximation of the matrix of counts:

 $\mathrm{E}(\mathbf{X}) \approx \mathbf{\Phi} \mathbf{\Theta}^{\top}, \qquad \mathbf{x}_d \sim \mathrm{Multinomial}(\mathbf{\Phi} \theta_d, N_d)$ where $\mathbf{\Phi} \in \mathbb{R}_+^{V \times K}$, $\mathbf{\Theta} \in \mathbb{R}_+^{D \times K}$ and K is small.

Log-predictive probability for LDA as a function of the number of processed documents

IVI converges faster and to a higher value on all considered datasets. (K=100, α_0 = 0.5 and β_0 = 0.05)

Wall-clock time comparisons and speed-up at MVI performance

Left: Wall-clock time (in minutes) comparisons for D-IVI for different number of machines on Arxiv and Customer Review. *Right:* Speed-up results of D-IVI for varying number of machines with respect to single machine.

Effect of the number of topics

Table 3: Log-prediction-probability (LPP) and runtime (in terms of minutes per iteration) of the IVI for different number of topics and number of processors (mini-batch size = 2000).

Datasets	Customer Review						Arxiv					
Number of		Number of Machines						Number of Machines				
Topics		1	5	10	20	50		1	5	10	20	50
25	LPP	-6.46	-6.46	-6.46	-6.46	-6.46	LPP	-6.57	-6.57	-6.57	-6.57	-6.57
	Time	138	31.6	16.7	10.8	5.3	Time	224	61	37	21.6	10.1
50	LPP	-6.33	-6.33	-6.33	-6.33	-6.33	LPP	-6.42	-6.42	-6.42	-6.42	-6.42
	Time	145	32.5	18	11	5.9	Time	263	65	41	23.7	11.3
100	LPP	-6.29	-6.29	-6.29	-6.29	-6.29	LPP	-6.33	-6.33	-6.33	-6.33	-6.33
	Time	148	33.2	18.6	11.5	6.1	Time	268	68	43	24.5	11.7
200	LPP	-6.49	-6.49	-6.49	-6.49	-6.49	LPP	-6.46	-6.46	-6.46	-6.46	-6.46
	Time	159	35.4	19.5	11.9	6.3	Time	297	73.7	46.2	26.8	12.8
1000	LPP	-6.84	-6.84	-6.84	-6.84	-6.84	LPP	-6.97	-6.97	-6.97	-6.97	-6.97
	Time	167	37.3	21.2	12.4	6.7	Time	306	78	49	28.2	13.4

Conclusion

- Distributed inference framework
- Monotonic increase of the bound
- Free of learning parameters
- Memory requirements scale linearly with the number of mini-batches
- Applicable to other data models

http://arxiv.org/abs/1507.05016