A Sampling Method Based on LDPC Codes

Cannot achieve all at

the same time!

Xuhong Zhang¹, Gregory W. Wornell¹

¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

Introducton

Wish list for an ideal sampling method:

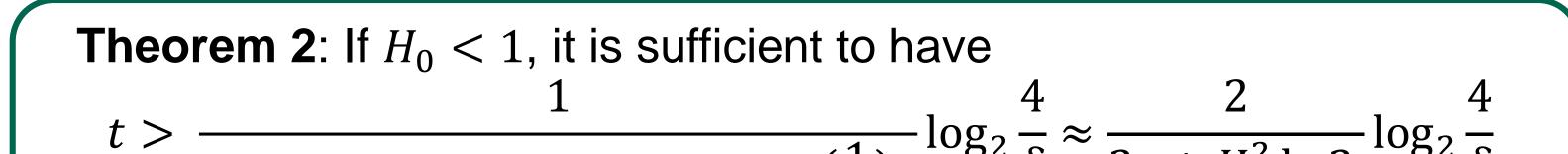
- Tractable computational costs
- Correctness

-...

- Independence
- Good scaling behaviour
- Efficient use of randomness

Our Contribution: a novel sampling method based on LDPC with good scaling behaviour, good control over independence properties and makes efficient utilization of randomness.

Theorem 1: Given $P_x(\cdot)$, $\epsilon > 0$, $\delta > 0$, t large enough s.t. $\mathbb{P}(\mathcal{T}_{\epsilon}^t) \ge 1 - \frac{\delta}{2}$ Then there exists an LDPC code with parity matrix $\mathbb{H} \in \{0,1\}^{K \times Nt}$ where $K \sim NtH_0$, for which the proposed sampling scheme produces a sequence in \mathcal{T}_{ϵ}^t with probability at least $1 - \delta$.



Proposed Sampling Scheme

Inspiration 1: Typical Sequences

Given $P_x(\cdot)$ over $\{0,1\}^N$, $H_0 = -\frac{1}{N}\sum_x P_x(x) \log_2 P_x(x)$, set of typical sequences can be defined for $\forall t \in \mathbb{N}$

 $\mathcal{T}_{\epsilon}^{t} = \{ (x^{1}, x^{2}, \dots, x^{t}) \in \{0, 1\}^{Nt} : \left| \frac{1}{t} \sum_{i=1}^{t} P_{x}(x^{i}) + NH_{0} \right| \le \epsilon \}$

Asymptotic Equipartition Property: typical sequences are roughly equiprobable and dominate the probability!

Idea: typical sequences \Rightarrow samples (e.g. by marginalization). But how to generate typical sequences?

Inspiration 2: Compression

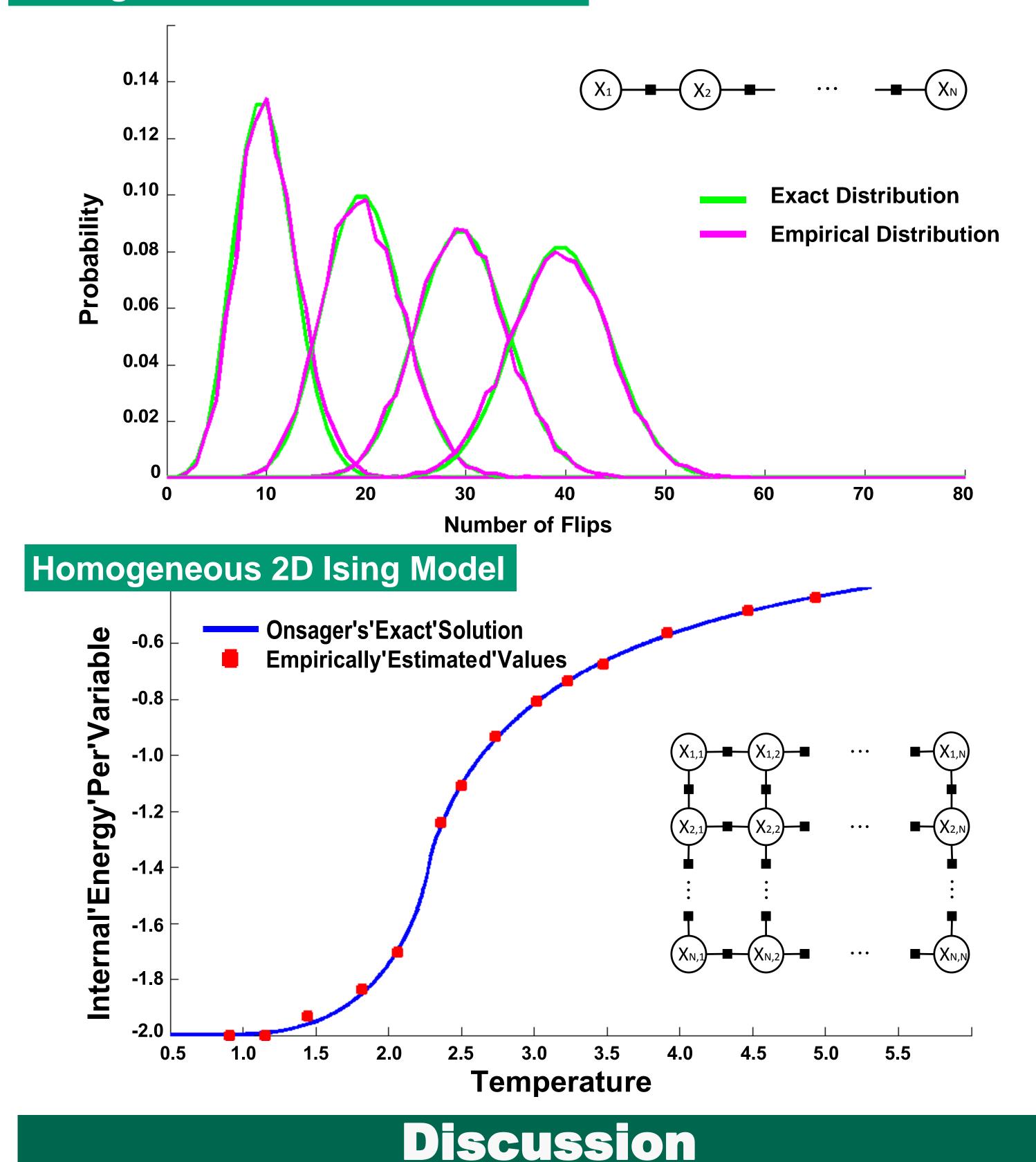
Compression (of discrete source): **typical sequence** \Rightarrow **index**

$$H_0 + \epsilon - \log_2(1 + H_0 \ln 2 + o\left(\frac{1}{N}\right)) \overset{O2}{\sim} \delta \quad 2\epsilon + H_0^2 \ln 2 \quad \overset{O2}{\sim} \delta$$

Experiment Results

In practice: step 3 infeasible \Rightarrow **Belief Propagation**

Homogeneous Markov Chain Model



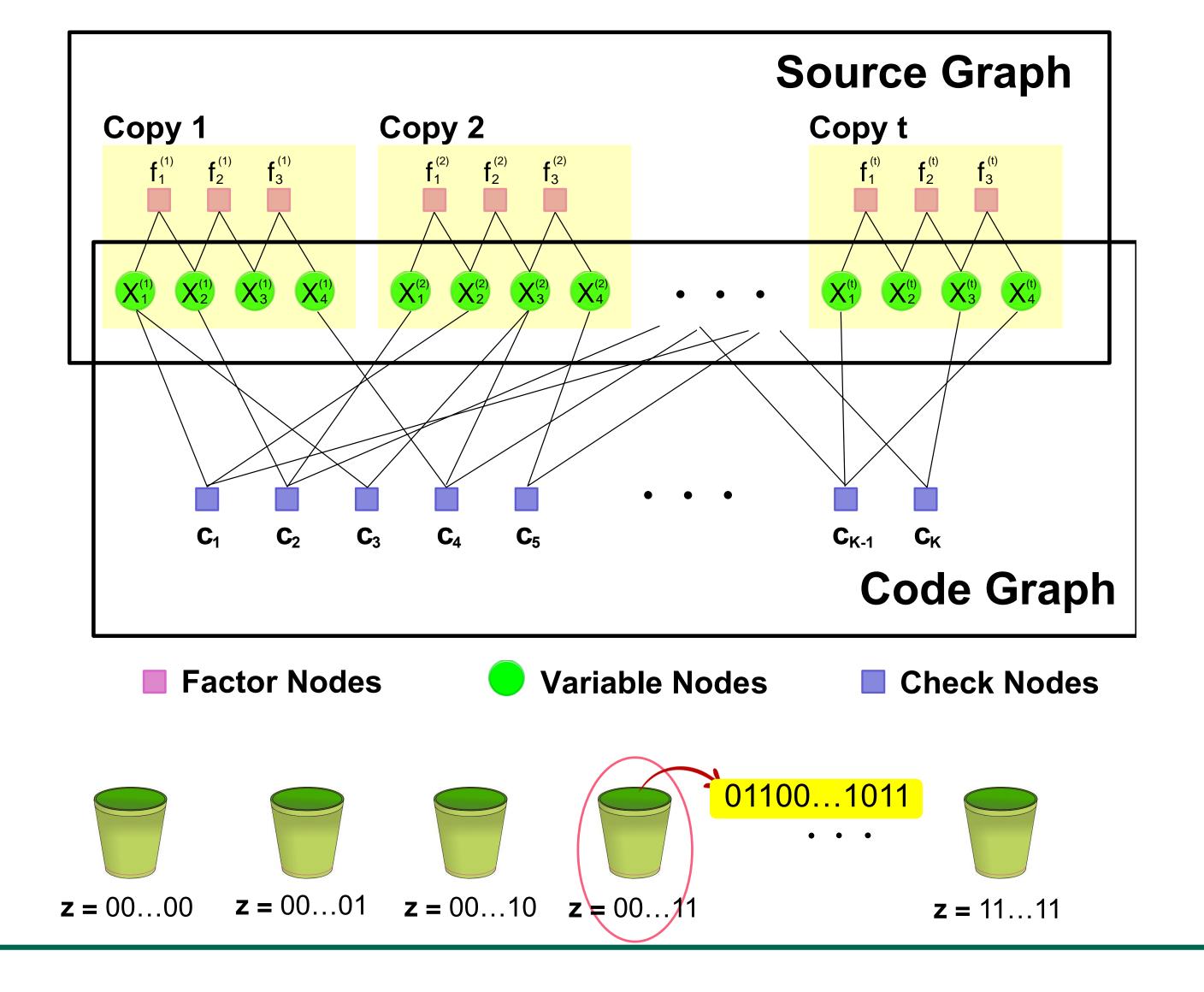
We want: index \Rightarrow typical sequence LDPC codes have been used for compression

(binary) LDPC Codes: $\mathbb{H} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 0 \end{pmatrix} \in \{0,1\}^{K \times Nt} \quad z = \mathbb{H} \begin{pmatrix} x^1 \\ \vdots \\ x^t \end{pmatrix} \pmod{2}$

LDPC code will be used as a hash function for the typical sequences!

Idea: reverse the process to do sampling!

LDPC-Based Sampling Scheme



The 'best' sampling method is application-dependent: different methods provide different trade-offs.

	Rejection Sampling	Importance Sampling	MCMC Methods	Proposed Scheme
Applicable to Continuous Variables?	Yes	Yes	Yes	No
Quality of Proposal Distribution Vital?	Yes	Yes	No	No
Applicable to High- Dimension Data?	No	No	Yes	Yes
Guaranteed Correctness?	Yes	Νο	Asymptotic	Approximate
Independent Samples?	Yes	N/A	No	Approximate
Highlights of desirable features of the proposed scheme:				

- 1. Construct the combined graph
- 2. Flip K independent fair coins to determine the parity bits
- 3. Find the most likely sequence corresponds to the selected parity bits.

a.Good scaling behaviour due to distributed nature of message-passing. **b.Economical use of randomness**: close to the theoretical minimum.

c.Good control over independence properties