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Abstract

Probabilistic inference is a key computational challenge in statistical machine
learning and artificial intelligence. The ability to represent complex high dimen-
sional probability distributions in a compact form is the most important insight in
the field of graphical models.
In this paper, we explore a novel way to exploit compact representations of high-
dimensional probability distributions in approximate probabilistic inference algo-
rithms. Our approach is based on discrete Fourier Representation of weighted
Boolean Functions, complementing the classical method to exploit conditional in-
dependence between the variables. We show that a large class of probabilistic
graphical models have a compact Fourier representation. This theoretical result
opens up an entirely new way of approximating a probability distribution. We
demonstrate the significance of this approach by applying it to the variable elim-
ination algorithm and comparing the results with the bucket representation and
other approximate inference algorithms, obtaining very encouraging results.

1 Introduction

Probabilistic inference is a key computational challenge in statistical machine learning and artificial
intelligence. Inference methods have an enormous number of applications, from learning models to
making predictions and informing decision-making using statistical models of data. Unfortunately,
the problem is computationally intractable, and standard exact inference algorithms, such as variable
elimination and junction tree algorithms have worst-case exponential complexity.

The ability to represent complex high dimensional probability distributions in a compact form is
the most important insight in the field of graphical models. The fundamental idea is to exploit
(conditional) independencies between the variables to achieve compact factored representations,
where a complex global model is represented as a product of simpler, local models. Similar ideas
have been considered in the analysis of Boolean functions and logical forms [6], as well as in physics
with low rank tensor decompositions and matrix product states representations [8, 14, 15, 23].

Compact representations are also key for the development of efficient inference algorithms, includ-
ing message-passing ones. Efficient algorithms can be developed when messages representing the
interaction among many variables can be decomposed or approximated with the product of several
smaller messages, each involving a subset of the original variables. Numerous approximate and
exact inference algorithms are based on this idea [6, 7, 18, 9, 24, 5, 13, 11].

Conditional independence (and related factorizations) is not the only type of structure that can be
exploited to achieve compactness. For example, consider the regression tree in the left panel of Fig-
ure 1. No two variables in this probability distribution are independent with each other. Therefore,
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Figure 1: (Left) A decision tree representing a function f : {x1, . . . , x7} → R+, which can-
not be represented by product of independent terms, but can be described exactly with 8 decision
rules. (Middle) Weight concentration on low degree coefficients in the Fourier domain for random
weighted 3-SAT instances with 20 variables and nc clauses. (Right) The absolute errors of log-
partition function for 15×15 Ising Grids (Field strength 0.1). Fourier is for the Variable Elimination
Algorithm in Fourier domain. mbe is for Mini-bucket Elimination. BP is for Belief Propagation.
MCMC is using the classical Ogata-Tanemura scheme[20] to estimate the partition function.

the probability distribution cannot be represented by the product of simpler terms and requires a full
probability table with 27 entries to be represented exactly. Nevertheless, this table can be described
exactly by 8 simple decision rules, each corresponding to a path from the root to a leaf in the tree.

In this paper, we explore a novel way to exploit compact representations of high-dimensional prob-
ability tables in (approximate) probabilistic inference algorithms. Our approach is based on a (dis-
crete) Fourier representation of the tables, which can be interpreted as a change of basis (see Table 1
for a small example). Crucially, tables that are dense in the canonical basis can have a sparse
Fourier representation. Under certain conditions, probability tables can be represented (or well ap-
proximated) using a small number of Fourier coefficients. The Fourier representation has found
numerous recent applications, including modeling stochastic processes [22, 1], manifolds [4], and
permutations [12]. Our approach is based on Fourier representation on Boolean functions, which
has found tremendous success in PAC learning [19, 17, 2, 3], but these ideas have not been fully
exploited in the fields of probabilistic inference and graphical models.

In general, a general factor over n Boolean variables requires O(2n) entries to be specified, and
similarly the corresponding Fourier representation is dense in general, i.e., it has O(2n) non-zero
coefficients. However, a rather surprising fact which was first discovered by Linial [16] is that factors
corresponding to fairly general classes of logical forms admit a compact Fourier representation.
Linial discovered that formulas in Conjunctive (or Disjunctive) Normal Form (CNF or DNF) with
bounded width (the number of variables in each clause) have compact Fourier representations.

In this paper, we introduce a novel approach for using approximate Fourier representations in the
field of probabilistic inference. We generalize the work of Linial to the probability distributions (the
weighted case where the entries are not necessarily 0 or 1), showing that a large class of probabilis-
tic graphical models have compact Fourier representation, if they are composed with factors with
bounded domain size and discriminative weights (see the middle panel of Figure 1). This includes
interesting graphical models, such as Markov Logic Networks [21] with discriminative weights. The
proof extends the famous Hastad’s Switching Lemma[10] to the weighted case. At a high level, a
compact Fourier representation often means the weighted probabilistic distribution can be captured
by a small set of critical decision rules. Hence, this notion is closely related to decision trees with
bounded depth.

Sparse (low-degree) Fourier representations provide an entirely new way of approximating a proba-
bility distribution. We demonstrate the power of this idea by applying it to the variable elimination
algorithm and comparing the result with bucket representation and various approximate inference
algorithms on a set of benchmarks, and obtain very encouraging results (see the right panel of Fig-
ure 1).
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x y φ(x, y)
-1 -1 f1
-1 1 f2
1 -1 f3
1 1 f4

φ(x, y) =

1− x
2
· 1− y

2
· f1

+
1− x
2
· 1 + y

2
· f2

+
1 + x

2
· 1− y

2
· f3

+
1 + x

2
· 1 + y

2
· f4

φ(x, y) =

1

4
(f1 + f2 + f3 + f4)

1

4
(−f1 − f2 + f3 + f4)x

1

4
(−f1 + f2 − f3 + f4)y

1

4
(f1 − f2 − f3 + f4)xy

Table 1: (Left) Function φ : {−1, 1}2 → R is represented in a contingency table. (Middle) φ is
re-written using interpolation. (Right) The terms of the equation in the middle is re-arranged, which
yields the Fourier expansion of function φ. Mathematically, Every function f : {−1, 1}n → R
can be uniquely expressed as a multilinear polynomial, f(x) =

∑
S⊆[n] cS

∏
i∈S xi, where each

cS ∈ R. This representation is known as the Fourier expansion.
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