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Stochastic Collapsed Variational Inference (SCVI)
• In (a), Variational Inference (VI) breaks the strong dependencies between the

parameters θ and the hidden variables z = z1, ..., zt, ..., zT .

• In (b), Collapsed Variational Inference (CVI) breaks the weak dependencies
between the hidden variables in the collapsed space.

• (c) summarizes the efficiencies and performances of VI, CVI, MCMC and their
minibatch-based inferential counterparts, namely stochastic VI (SVI), stochas-
tic CVI (SCVI), stochastic gradient Langevin dynamics (SGLD).

•There has been little research on whether and how we can apply the recent ad-
vanced approximate inference algorithms in a time depedent data setting.

Hierarchical Dirichlet Process Hidden Markov Models (HDP-HMMs)
•The graphical model of a HDP-HMM is shown in (d).

•After introducing the auxiliary variables, the collapsed representation of a HDP-
HMM is shown in (e).

•Goal: we are interested in the posterior p(z, η, s, γ, α, π̃|x). As the exact compu-
tation is intractable, we introduce a variational distribution in a tractable family,

q(z, η, s, γ, α, π̃) = q(z)q(η|z)q(s|z)q(γ)q(α)q(π̃),

and we maximize the evidence lower bound (ELBO) denoted by L(q),

log p(x) ≥ E[log p(x, z, η, s, γ, α, π̃)]− E[log q(z, η, s, γ, α, π̃)] , L(q).

•The primary challenge is the sequential dependencies, which stand in the way
of updating both the subchains and the HDP posteriors.

Introduction

Inference of Subchain Posteriors
• Idea: break a long Markov chain into a set of subchains, q(z) =

∏N
n=1 q(zn).
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•Challenge: the boundary transitions θ̂·,zn1 and θ̂znL,· prevent us from running the
standard forward backward algorithm.

•Our Solution: expand q(zn) to q(z(n), zn0 , znL+1),
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which can be represented by a factor graph,

define the potential functions to make sure
∑

zn0 ,z
n
L+1
q(z(n), zn0 , znL+1) = q(zn), and

develop a novel sum product algorithm.

Experiment One
•We evaluated the utility of our buffering method and compared the performances

of our SCVI algorithm against the SVI algorithm on two datasets, the Wall Street
Journal (WSJ) and New York Times (NYT).

•We created two very long synthetic time series by joining sentences. As the eval-
uation metrics, we used predictive log likelihoods by holding out small subsets.

•We fixed L×M = 1000, where L is the subchain length and M is the minibatch
size. We varied L and the forgetting rates, κ = 0.5, 0.9.

• In most settings our SCVI algorithm outperformed the SVI algorithm by large
margins. When L is small, there are noticeable improvements using respective
buffering methods in both algorithms. For SCVI, we attribute the improvement
to the inter subchain communication through the buffering variables.

Our Contribution One

Inference of HDP Posteriors
•Basics: the HDP posteriors are governed by the variational parameters, which

we aim to update after a minibatch. For example, q(π̃k′) = Beta(uk′, vk′).

• Idea: take a weighted average of the intermediate variational parameters on the
N replicates of (xn, zn) with their old estimates. For example, the update equa-
tion for uk′ is uk′ := (1− ρn)uk′ + ρn(1 + E[s(N)

·k′ ]).

•Challenge: compute E[sNkk′] (the expected number of tables in the metaphor of
the Chinese Restaurant Process) on the N replicates of (xn, zn). E[sNkk′] is not a
linear function of N . That is E[sNkk′] 6= NE[snkk′].

•Our Solution: use the approximation technique by Teh et al. (2008),

E[s(N)
kk′ ] ≈ G[απk′]q(C

(N)
kk′ > 0)(ψ(G[απk′] + E+[C

(N)
kk′ ])− ψ(G[απk′])),

linearly and exponentially scale other local statistics, respectively,
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(N)
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q(C
(N)
kk′ > 0) = 1− q(C(N)

kk′ = 0) = 1− exp{N log q(Cn
kk′ = 0)},

and develop a fast approximation method,

q(Cn
kk′ = 0) ≈ exp{

∑
l log(1− q((znl−1, znl ) = (k, k′)))}.

Experiment Two
•The data and metric are the same as in the experiment one except that we con-

sider each sentence as an independent subchain.

• In all cases our SCVI with HDP inference performed the best.

Our Contribution Two


