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Abstract

Stochastic variational inference for collapsed models has recently been success-
fully applied to large scale topic modelling. In this paper, we propose a stochastic
collapsed variational inference algorithm in the sequential data setting. Our algo-
rithm is applicable to both finite hidden Markov models and hierarchical Dirichlet
process hidden Markov models, and to any datasets generated by emission distri-
butions in the exponential family. Our experiment results on two discrete datasets
show that our inference is both more efficient and more accurate than its uncol-
lapsed version, stochastic variational inference.

1 Background

A hidden Markov model (HMM) [1] consists of a hidden state sequence z = {zt}Tt=0 and a corre-
sponding observation sequence x = {xt}Tt=1. Let there be K hidden states. For convenience, we let
the start state be 0 and set z0 = 0. Let θ be the transition matrix where θk,k′ = p(zt = k′|zt−1 = k),
and θ0 be the initial state distribution where θ0,k′ = p(z1 = k′). A hierarchical Dirichlet process
HMM (HDP-HMM) [2, 3] allows to use an unbounded number of hidden states by constructing
an infinite mean vector π from a stick breaking process and drawing transition vectors θk from the
shared π. We have for k = 1, 2, ... and for k′ = 1, 2, ...,

πk′ = π̃k′
k′−1∏
l=1

(1− π̃l) π̃k′ ∼ Beta(1, γ) θk ∼ DP(α, π). (1)

A hidden sequence is generated by a first order Markov process, and each observation is generated
conditioned on its hidden state. We have for t = 1, ..., T ,

zt|zt−1 = k ∼ Mult(θk) xt|zt = k′ ∼ p(·|φk′), (2)

where φk′ parametrizes the observation likelihoods for k′ = 1, 2, ..., with φk′,w = p(xt = w|zt =
k′). We assume that the observation likelihoods and their conjugate prior take exponential forms:

p(w|φk′) = hl(w) exp{φTk′t(w)− al(φk′)} (3)

p(φk′ |λ◦) = hg(φk′) exp{(λ◦1)Tφk′ + (λ◦2)
T (−al(φk′))− ag(λ◦)}. (4)

The base measure h and log normalizer a are scalar functions; and the parameter φk′ and sufficient
statistics t are vector functions. The subscripts l and g represent the local hidden variables and global
model parameters, respectively. The dimensionality of the prior hyperparameter λ◦ = (λ◦1, λ

◦
2) is

equal to dim(φk′) + 1. For a complete Bayesian treatment, we place vague Gamma priors on α and
γ, α ∼ Gamma(a◦α, b

◦
α) and γ ∼ Gamma(a◦γ , b

◦
γ). The graphical model is shown in figure 1 (left).
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Figure 1: Left: an HDP-HMM. Right: a collapsed HDP-HMM with auxiliary variables. Here we
suppress the first order Markov dependencies into one plate repeated T times to fit the page.

2 Stochastic Collapsed Variational Inference

HMMs and HDP-HMMs are popular probabilistic models for modelling sequential data. However,
their traditional inference methods such as variational inference (VI) [4] and Markov chain Monte
Carlo (MCMC) [3, 5] are not readily scalable to large datasets (e.g., one dataset in our experiment
contains 5 million sequences with combined length over 100 million). In this paper, we follow the
success of stochastic collapsed variational inference (SCVI) for latent Dirichlet allocation (LDA) [6],
and we propose a scalable SCVI algorithm for HMMs and HDP-HMMs. Our algorithm achieved
better predictive performances than the stochastic variational inference (SVI) [7] applied to HMMs
[8] and to HDP-HMMs [9].

We present our derivation in the following three steps: 1. we marginalize out the model parameters
(θ, φ); 2. we derive stochastic updates for each sequence; 3. we derive stochastic updates for the
posteriors of the HDP parameters (α, β, γ) (for HDP-HMMs only). For notational simplicity, we
consider a dataset of N sequences each of length T . That is x = {xn}Nn=1 and xn = {xnt }Tt=1.
Similarly, we write for hidden sequences z = {zn}Nn=1 and zn = {znt }Tt=1.

2.1 Collapsed HDP-HMMs

There is substantial empirical evidence [10, 11, 6] that marginalizing the model parameters is helpful
for both accurate and efficient inference. The marginal data likelihood of an HDP-HMM is:

p(x, z) =
K∏
k=0

Γ(α)
Γ(α+Ck·)

∏K
k′=1

Γ(απk′+Ckk′ )
Γ(απk′ )

N∏
n=1

T∏
t=1

hl(x
n
t )

K∏
k′=1

exp{ag(λk
′
)− {ag(λ◦)}. (5)

The gamma functions and log normalizers come from the marginalization. Ckk′ denotes the tran-
sition count from the hidden state k to k′, Ckk′ = #{n, t : znt−1 = k, znt = k′}. dot denotes the
summed out column, e.g.,C·k′ =

∑
k Ckk′ . λ

k′ denotes the posterior hyperparameter for the hidden
state k′, λk

′

1 = λ◦1 +
∑N
n=1

∑T
t=1 t(x

n
t )δ(z

n
t = k′) and λk

′

2 = λ◦2 + C·k′ , where δ is the standard
delta function.

The gamma functions are a nuisance to take derivatives of (5). Following [12], we replace them by
integrals of some auxiliary variables η and s and the joint likelihood becomes:

p(x, z, η, s)

=

K∏
k=0

ηα−1
k (1−ηk)Ck·−1

Γ(Ck·)

∏K
k′=1

[
Ckk′
skk′

]
(απk′)

skk′

N∏
n=1

T∏
t=1

hl(x
n
t )

K∏
k′=1

exp{ag(λk
′
)− {ag(λ◦)} (6)

where ηk ∈ [0, 1] is Beta distributed, skk′ ∈ {0, 1, ..., Ckk′} is the number of tables labelled with
k′ in the kth Chinese restaurant in a Chinese restaurant franchise, and

[
Ckk′
skk′

]
is unsigned Stirling

number of the first kind. The factor graph with the auxiliary variables is given in figure 1 (right).

We are interested in the posterior p(z, η, s, γ, α, π̃|x). As the exact computation is intractable, we
introduce a variational distribution in a tractable family,

q(z, η, s, γ, α, π̃) = q(z)q(η|z)q(s|z)q(γ)q(α)q(π̃), (7)
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and we maximize the evidence lower bound (ELBO) denoted by L(q),

log p(x) ≥ E[log p(x, z, η, s, γ, α, π̃)]− E[log q(z, η, s, γ, α, π̃)] , L(q). (8)

By the ‘direct assignment truncation’ [12, 9], we set the truncation level to be K. That is q(z = 0)
if for any n and t such that znt > K.

2.2 Inference for Sequences

To infer q(z), we factorize it as a product of independent sequences, q(z) =
∏N
n=1 q(z

n). Combining
the work of SCVI for LDA [6] and CVI for HMM [11], we randomly sample xn with n ∼ U [1, N ],
and we derive the update for q(zn) with a zeroth order Taylor approximation [13]:

q(zn) ∝
T∏
t=1

θ̂znt−1,z
n
t

T∏
t=1

φ̂znt ,xnt θ̂k,k′ ∝ G[απk′ ] + E[Ckk′ ] (9)

φ̂k′,w ∝ h(w) exp{ag(λ◦1 + t(w) + E[tk′(x, z)], λ◦2 + 1 + E[C·k′ ])}, (10)

in which G denotes the geometric expectation, E[Ckk′ ] denotes the expected transition count from
state k to k′, and E[tk′(x, z)] =

∑N
n=1

∑T
t=1 q(z

n
t = k′)t(xnt ) denotes the emission statistics at the

hidden state k′. The details on expectations that appear in the paper are in Appendix A.

As q(zn) is proportional to a HMM parametrized by the surrogate parameters θ̂ and φ̂, we can use the
forward backward algorithm [14]. After collecting the local transition counts E[Cnkk′ ] and emission
statistics E[tk′(xn, zn)], we update the global statistics by taking a weighted average:

E[Ckk′ ] = (1− ρn)E[Ckk′ ] + ρnNE[Cnkk′ ] (11)
E[tk′(x, z)] = (1− ρn)E[tk′(x, z)] + ρnNE[tk′(xn, zn)], (12)

where ρn is the step size satisfying
∑
n ρ

2
n ≤ ∞ and

∑
n ρn =∞.

Unlike CVI for HMM [11], our algorithm is memory efficient, since we update q(zn) without sub-
tracting the local statistics, as such they do not need to be explicitly stored.

2.3 Inference for HDP

For notational clarity, we write the variational posteriors of the HDP parameters to be governed by
their variational parameters. We have,

q(π̃k′) = Beta(uk′ , vk′) q(α) = Gamma(aα, bα) q(γ) = Gamma(aγ , bγ). (13)

We derive stochastic updates for the HDP posteriors. For a randomly selected sequence xn, we form
an artificial dataset {xn(N)

, zn
(N)} consisting N replicates of the observed and hidden sequences

{xn, zn}. Assuming we can compute E[s(N)
kk′ ] and E[log η(N)

k ] based on the artificial dataset, we
derive the intermediate variational parameters and take a weighted average with their old estimates.
Hence, we have the following updates (E[log(1− π̃k′)] in (16) is also a function of E[s(N)

kk′ ]):

uk′ = (1− ρn)uk′ + ρn(1 + E[s(N)
·k′ ]) vk′ = (1− ρn)vk′ + ρn(E[γ] + E[s(N)

·>k′ ]) (14)

aα = (1− ρn)aα + ρn(a
◦
α + E[s(N)

·· ]) bα = (1− ρn)bα + ρn(b
◦
α −

∑
k E[log η

(N)
k ]) (15)

aγ = (1− ρn)aγ + ρn(a
◦
γ +K) bγ = (1− ρn)bγ + ρn(b

◦
γ −

∑
k′ E[log(1− π̃k′)]) (16)

where dot denotes the summed out column, and > k′ denotes summing over l for l > k′. The
details on computing E[s(N)

kk′ ] and E[log η(N)
k ] are in Appendix B. Stochastic optimizations often

benefit from the use of minibatches, to reduce the variance of noisy samples and the updating time of
variational parameters. Thus we propose to update the global statistics after a minibatch is processed,
and to update the HDP posteriors after a larger batch is processed. Altogether, our SCVI algorithm
for HDP-HMMs is given in Appendix C, and it applies to HMMs by removing the outermost loop.
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Figure 2: Top three rows: comparison on WSJ under various minibatch sizes M and forgetting rates
κ. Bottom row: comparison on NYT under various (truncated) numbers of hidden states K.

3 Experiments

We evaluated our SCVI algorithm applied to HMMs (denoted by SCVI) and applied to HDP-HMMs
(denoted by SCVIHDP) compared to the SVI algorithm applied to HMMs [8] (denoted by SVI). SVI
applied to HDP-HMMs was omitted, since we were unable to make noticeable improvement over
SVI using a point estimate of the top level stick π [9]. We used two discrete datasets, the Wall Street
Journal (WSJ) and New York Times (NYT). Both datasets are made of sentences. For each sentence,
the underlying sequence can be understood as a Markov chain of hidden part-of-speech (PoS) tags
[15] and words are drawn conditioned on PoS tags, making (HDP)-HMMs natural models. We used
the predictive log likelihoods as our evaluation metrics.

For SVI and SCVI, we set the transition priors to Dir(0.1), to encourage sparsity. For SCVIHDP,
we set the HDP priors to be vague, Gamma(1, 0.1). We set G[απk′ ] = 0.1 for the first iteration
such that all the algorithms started with the same transition prior counts. Finally, all the emission
priors were set to Dir(0.1); all the global statistics E[Ck,k′ ] and E[tk′(x, z)] were initialized using
exponential distributions, as suggested by [7].

The first three rows in figure 2 presents the predictive log likelihood results of three inferences on
WSJ (49, 000 sentences, 90% for training and 10% for testing). We fixed the number of hidden
states (or truncation level) K = 451 and varied the minibatch sizes M and forgetting rates κ, which
parametrize the step sizes ρn = (1+n)−κ. The large batch size was set to be 10, 000 for SCVIHDP.
We let each inference run through the dataset 10 times and reported the per time step likelihoods.
In all the settings, our SCVI outperformed SVI by large margins, extending the success of SCVI for

1One goal of our experiments is to show the improvement by sharing statistics using our HDP inference.
Using a larger truncation level than the number of hidden states would put our SCVIHDP in an advantageous
position and we would not be able to identify the source of improvement.
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LDA [6] to time series data. Further, our collapsed HDP inference helped SCVIHDP to surpass our
SCVI by noticeable margins.

The forth row in figure 2 presents the predictive log likelihood results of three inferences on NYT (5
million sentences, 99% for training and 1% for testing) using the complementary settings to WSJ.
We fixed κ = 0.5 and M = 1000 and varied K. We ran all the algorithms (implemented in Cython)
for 6 hours and reported the likelihood results versus wall-clock time. We see that given the same
time, our SCVI converged much better than SVI. Our SCVIHDP overlapped with our SCVI towards
the end, but it was always better prior to that, making better use of its time.

4 Conclusion

In this paper, we have presented a general stochastic collapsed variational inference algorithm that is
scalable to very large time series datasets, memory efficient and significantly more accurate than the
existing SVI algorithm. Our algorithm is also the first truly variational algorithm for HDP-HMMs,
avoiding point estimates, and it comes with performance gains. For future work, we aim to derive the
true nature gradients of the ELBO to prove and further speed up the convergence of our algorithm
[16], although we never saw a nonconverging case in our experiments.

References
[1] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recogni-

tion. pages 267–296, 1990.
[2] Matthew J. Beal, Zoubin Ghahramani, and Carl E. Rasmussen. The infinite hidden Markov model. In

Machine Learning, pages 29–245. MIT Press, 2002.
[3] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the

American Statistical Association, 101(476):1566–1581, 2006.
[4] Matthew Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, The Gatsby

Computational Neuroscience Unit, University College London, 2003.
[5] Jurgen Van Gael, Yunus Saatci, Yee W. Teh, and Zoubin Ghahramani. Beam sampling for the infinite

hidden markov model. In ICML ’08: Proceedings of the 25th international conference on Machine
learning, pages 1088–1095, New York, NY, USA, 2008. ACM.

[6] James R. Foulds, L. Boyles, C. DuBois, Padhraic Smyth, and Max Welling. Stochastic collapsed varia-
tional bayesian inference for latent dirichlet allocation. In KDD, 2013.

[7] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference. J.
Mach. Learn. Res., 14(1):1303–1347, May 2013.

[8] Nicholas Foti, Jason Xu, Dillon Laird, and Emily Fox. Stochastic variational inference for hidden Markov
models. In Advances in Neural Information Processing Systems 27, pages 3599–3607. 2014.

[9] Matthew Johnson and Alan Willsky. Stochastic variational inference for Bayesian time series models. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1854–1862.
JMLR Workshop and Conference Proceedings, 2014.

[10] Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh. On smoothing and inference for
topic models. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Arlington, Virginia, United States, 2009.

[11] Pengyu Wang and Phil Blunsom. Collapsed Variational Bayesian Inference for Hidden Markov Models.
In Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS),
Scottsdale, AZ, USA, 2013.

[12] Y. W. Teh, K. Kurihara, and M. Welling. Collapsed variational inference for HDP. In Advances in Neural
Information Processing Systems, volume 20, 2008.

[13] Yee Whye Teh, David Newman, and Max Welling. A collapsed variational Bayesian inference algorithm
for latent Dirichlet allocation. In In Advances in Neural Information Processing Systems, volume 19,
2007.

[14] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

[15] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2000.

[16] Francisco J. R. Ruiz, Neil D. Lawrence, and James Hensman. True natural gradient of collapsed varia-
tional bayes. In NIPS Workshop on Advances in Variational Inference, Montreal, 2014.

5



Appendix A

In this section, we present the standard (geometric) expectations that appeared in the main paper.

If x is Beta distributed, p(x|u, v) ∝ xu−1(1− x)v−1, (e.g., π̃k′ in the main paper), we have,

E[log x] = ψ(u)− ψ(u+ v) E[log(1− x)] = ψ(v)− ψ(u+ v) (17)

If x is Gamma distributed, p(x|a, b) ∝ xa−1e−bx (e.g., α in the main paper), we have,

E[x] = a/b G[x] = eψ(a)/b (18)

If x and y are independent, (e.g., α and πk′ in the main paper), we have G[xy] = G[x]G[y].

Appendix B

In this section, we present the details on computing E[s(N)
kk′ ] and E[log η(N)

k ]. For E[s(N)
kk′ ], we notice

the inequality2: E[s(N)
kk′ ] 6= NE[snkk′ ]. Thus we compute it as follows:

E[s(N)
kk′ ] ≈ G[απk′ ]q(C

(N)
kk′ > 0)(ψ(G[απk′ ] + E+[C

(N)
kk′ ])− ψ(G[απk′ ])) (19)

q(C
(N)
kk′ > 0) = 1− q(C(N)

kk′ = 0) = 1− exp{N log q(Cnkk′ = 0)} (20)
q(Cnkk′ = 0) ≈ exp{

∑
t log(1− q((znt−1, z

n
t ) = (k, k′)))} (21)

E+[C
(N)
kk′ ] ≈ NE[Cnkk′ ]/q(C

(N)
kk′ > 0) (22)

The approximation in (19) comes from the technique proposed by Teh et al. detailed in [12]. In
(20), q(C(N)

kk′ > 0) denotes the probability of at least one transition from state k to state k′; and the
second equality comes from the fact that zn is repeated N times under exactly the same distribution.
In (21) and (22), we propose a fast approximate method. We partition a hidden sequence zn into
a set of overlapping but independent clusters {(znt , znt+1)}Tt=1. Allowing to overlap is sufficient to
preserve all the pairwise transition information, while making the independence assumption permits
the above linear computations as in [12]. The same strategy applies to computing E[log η(N)

k ].

E[log η(N)
k ] ≈ q(C(N)

k· > 0)(ψ(E[α])− ψ(E[α] + E+[C
(N)
k· ])) (23)

q(C
(N)
k· > 0) = 1− q(C(N)

k· = 0) = 1− exp{N log q(Cnk· = 0)} (24)
q(Cnk· = 0) ≈ exp{

∑
t log(1− q((znt−1) = (k)))} (25)

E+[C
(N)
k· ] ≈ NE[Cnk·]/q(C

(N)
k· > 0) (26)

Appendix C

In this section, we present our SCVI algorithm for HDP-HMMs.

Algorithm 1 SCVI for HDP-HMMs (and for HMMs by deleting the outermost loop)

Randomly initialize E[Ck,k′ ] and E[tk′(x, z)]
for each large batch do

for each mini batch do
for each sequence xn do

update q(zn) by Eqs. (9,10)
end for
update E[Ck,k′ ],E[tk′(x, z)] by Eqs. (11,12)

end for
update q(π), q(α), q(γ) by Eqs. (14,15,16)

end for

2 E[snkk′ ] is the expected number of tables k′ in the kth restaurant. The inequality holds by the property of
CRP: the expected number of tables grows not linearly but logarithmically with the number of customers.

6


	Background
	Stochastic Collapsed Variational Inference
	Collapsed HDP-HMMs
	Inference for Sequences
	Inference for HDP

	Experiments
	Conclusion

