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Abstract

We present a full variational treatment of the Coupled Gaussian Process Dynam-
ical Model (CGPDM), which is a non-parametric, modular dynamical movement
primitive model. Our work builds on similar developments in Gaussian state-space
models, but we obviate the need for sampling, which results in a fast deterministic
approximation for the posterior of latent states. We illustrate the performance of
our model on synthetic data.

1 Motivation

Planning and execution of full-body movements is a formidable control problem. Modular move-
ment primitives (MP) have been suggested as a means to simplify this control problem while retain-
ing a sufficient degree of control flexibility for a wide range of task, see Bizzi et al. [2008] for a
recent review. "Modular’ in this context usually refers to the existence of an operation which allows
for the combination of (simple) primitives into (complex) movements. Thus, MPs are a type of
compressed representation of the movements of the end-effectors (arms, legs etc).

A particularly well-developed type of MP in robotics is the dynamical movement primitive (DMP)
[Schaal, 2006]. In this approach, each primitive is encoded by a second order differential equation
with guaranteed stability properties and learnable parameters. However, the form of the differential
equation remains fixed during learning, which can potentially reduce the representational capacity of
DMPs. To lift this restriction, we devised a model that learns MPs comprised of coupled dynamical
systems and associated kinematics mappings, where both components are learned. We build on the
Coupled Gaussian Process Dynamical Model (CGPDM) by Velychko et al. [2014], which combines
the advantages of modularity and flexibility in the dynamics, at least theoretically. In a CGPDM,
the temporal evolution functions for latent dynamical systems are drawn out of a Gaussian process
(GP) prior [Rasmussen and Williams, 2005, Wang et al., 2008]. These dynamical systems are then
coupled probabilistically, the result is mapped onto observations by functions drawn from another
GP. One drawback of the CGPDM is its fully non-parametric nature, which leads to a prohibitive
run-time scaling for large datasets. We improve this scaling by employing sparse variational ap-
proximations [Titsias, 2009, Titsias and Lawrence, 2010, Frigola et al., 2013, 2014] and obviating
the need for sampling. In our model, each MP is effectively parametrized by a small set of inducing
variables, leading to a compact representation. This compactness is important for real-world appli-
cability of the model, since there might be more primitives than muscles (or actuators) across tasks,
as pointed out by Bizzi and Cheung [2013]: the motor ’code’ might be sparse and overcomplete,
similar to the sparse codes in early vision [Foldidk and Endres, 2008].
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Figure 1: The graphical model representation of the augmented Coupled Gaussian Process Dynam-
ical Model (CGPDM). Shown is a model with 2 parts, indicated by the superscripts m € {1,2}.
Latent, vector-valued dynamical random variables X" generate (vector-valued) observations Y,
via functions g™ (}) drawn from a GP augmented with inducing points r’" and associated values
v} such that g™ (r"™) = v™ and (vg', ..., v} ) € range(V™) [Titsias, 2009]. Gaussian noise 7 is
added to the observations, i.e. y;* = ¢ (") + 1 (not shown). The second-order mean dynamics
functions f™(X} ,, X} 1, X2 5, X2 1), which govern the temporal evolution of the mean of X",
x' = f™(x]_y, @i, x7 5 @7 ), are also drawn from a GP augmented with (23, ..., 27 ) and
(ug', ..., up" ) € range(U™). The cyan and magenta connections couple part one (top half) to part
two of the model (bottom half) by product-of-experts [Hinton, 1999] combination of their individual
predictions with variable coupling strengths.



2 The model

A CGPDM is basically a number of GPDMs (the parts’) run in parallel, with coupling between the
latent space dynamics. Fig. 1 shows a model with 2 parts (top and bottom half of figure). Each part
m € {1,2} is comprised of a latent, second-order dynamics model f™(X} o, X} |, X2 o, X2 ;)
drawn from a GP(u(.), k(.,.)). We chose a second-order model, because our target application is
human movement modeling, and the literature indicates (e.g. [Taubert et al., 2012]) that a second-
order model is a good choice for this task. In a CGPDM, the GP(u(.), k(.,.)) has a constant zero
mean function p(.) = 0 and a kernel that is derived with product-of-experts (PoE, [Hinton, 1999])
coupling between the latent spaces of the different parts, as described by [Velychko et al., 2014]:
each part generates a Gaussian prediction about every part (i.e. 1nc1ud1ng itself). Let ;""" be the
mean of the prediction of part m about part n at time index ¢, and o2, ,, its variance. Following the
standard PoE construction of multiplying the densities of the 1nd1v1dual predictions and renormaliz-
ing, one finds
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where dim(X™) is the dimensionality of the latent space of part n and o2 is the total predictive

variance:
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Velychko et al. [2014] showed that the individual predictions ;""" can be marginalized out in closed

form, if each of them is generated by a function drawn from a GP with mean zero and kernel

Emn(.,.). In that case, one obtains a model where the dynamics function f™(...) of each part n is

drawn from a GP with zero mean function and kernel
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where X ™ is obtained by stacking the latent variable values x ,, }" ; into a vector and X is the
tuple of all X™. In the graphical model in fig. 1, this marginalization has been carried out. The
form of eqn. 3 indicates the function of the coupling variances: the smaller a given variance, the
more important is the prediction of the generating part. Thus, the Jﬁw can not only be learned from
data, but also modulated after learning to generate movements with different dynamics [Velychko
et al., 2014]. The latent states x;" generate Gaussian-distributed observations Y, = y}"

The basic CGPDM exhibits the usual cubic runtime scaling with the number of datapoints, which
prohibits learning from large datasets. We therefore developed a sparse variational approximation,
following the treatment in [Titsias, 2009]. We augment the model with inducing points 77" and

associated values v’ such that g™ (r™) = v™ for the latent-to-observed mappings g™ (X m), and

condition the probability density of the function values of g™ (.) on these points/values, which we
assume to be a sufficient statistic for g (X™). We apply the same augmentation strategy to reduce

the computational effort for learning the dynamics mappings, which are induced by (2§, ..., z")
and (ug', ..., u;" ) € range(U™), see fig. 1. To learn the model, we optimize the proposal posterior
distribution ¢(X') to maximize the “evidence lower bound” (ELBO) L(q) [Bishop, 2006]:
p(X.Y)
L(q) = /q(X log ——=—*dX 4
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Key assumption: to obtain a tractable variational posterior distribution g over the latent states ;" =
(x?fl, e x;’fdm ), we choose a distribution that factorizes across time steps 0, ..., T, parts 1, ..., M
and dimensions 1, . .., @, within parts:
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Figure 2: Learning a latent dynamical system on toy data. Left: training trajectories (light colors)
and generated trajectories after training (solid color) for two out of 10 observed dimensions. The
generated trajectories follow the mean of the training trajectories. Middle: latent trajectories (light
blue) and learned inducing point locations (crosses: GPLVM component, circles: dynamics model).
Inducing points cover the training trajectories in the latent space well, and a small number of in-
ducing points seems to be enough for the generation of the trajectories, as can be seen on the right:
latent trajectories (light blue) and generated trajectory after training (solid green).

and assume that the individual distributions are Gaussian:
2,

q(@ii) = N(uiy 005"). (6)
While this approximating assumption is clearly a gross simplification of the correct latent state pos-
terior, it allows us to make analytical progress: a variational lower bound on the marginal likelihood
will be a sum of two main contributions. First, the latent-to-observed component of the model is now
a variational GPLVM as described by Titsias and Lawrence [2010]. Hence, the results of that paper
can be reused without alteration. Second, the dynamics component. We can derive closed-form

expressions for the required integrals for certain kernels &, (X , X ’) . Specifically, we use an ARD
(automatic relevance detection) squared exponential kernel [Bishop, 2006] for every part-m-to-n

prediction GP:
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Since the individual k., ,(X™, X™") enter linearly into the coupling kernel (eqn. 3), the averages

over the g(z}";) can be carried out before the coupling kernel is assembled, i.e. we can compute the
4

solution for one part at a time and compute sums weighted by UZ—L afterwards. The computations
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required for this are lengthy (and error-prone) but straightforward, and resemble those for the varia-
tional GPLVM of Titsias and Lawrence [2010]. We will present the details in a technical report that
will soon be uploaded to the ArXiv.

3 Results

We implemented the model in Python 2.7 using the machine-learning framework Theano
[Bastien et al., 2012] for automatic differentiation to enable gradient-based maximiza-
tion of the variational lower bound on the marginal probability of the data with the
scipy.optimize.fmin_1 bfgs_ b routine [Jones et al., 2001-]. To illustrate the performance
of our model, we created artificial data by sampling form a CGPDM with 2 parts, 2 dimensions in
the latent space and 10 observed dimensions per part. We learned a model of 2 parts. Fig. 2 shows
learned and generated trajectories in both observed and latent space. It is evident from the plots that
the model learns to generalize the training data well: numerically speaking, the explained variance
on the training data is ~ 0.93, and ~ 0.91 on testing data not used for training. Our current work is
focused on more extensive experiments with synthetic data, and a large database of human motion
capture data. The latter is now feasible because the runtime complexity of the augmented sparse
CGPDM scales linearly with the datapoints.
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