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Abstract: the Gibbs sampler mixes rapidly (sometimes)
Gibbs sampling is a Markov chain method used to sample from a variety of complicated distributions. We
show that in the case of Restricted Boltzmann Machines, the mixing rate of the Gibbs sampler can be
bounded both above and below.

Restricted Boltzmann Machines (RBMs)

Restricted Boltzmann Machines (RBMs):

• Class of undirected bipartite graphical model

• Nodes partitioned into visible layer (n nodes)
and hidden layer (m nodes)

• Probability of (v, h) ∈ {0, 1}n+m:

π(v, h) = 1
Z

exp

 n∑
i=1

aivi +
m∑
j=1

bjhj +
∑
i,j

viWijhj


where the ai’s and bj ’s are biases, the Wij ’s are the
interaction strengths or weights, and Z is the normal-
ization constant to make π sum to one.

Approximately sampling from π:

• Hard for general weight matrices (Long and
Servedio 2010)

• Easy for restricted class of weight matrices (this
work)

The Gibbs Sampler
The Gibbs sampler is a Markov chain whose stationary distribution is the distribution π(·) from above. It
proceeds by starting from an arbitrary configuration Z0 ∈ {0, 1}n+m and then repeating the following.

Where σ(x) = 1/(1 + exp(−x)) and Ber(p) is the Bernoulli distribution with success probability p.

Fact: Zt
d→ π(v, h) as t→∞.

Mixing Rates

For two measures µ, ν over a discrete state space Ω,
the total variation distance is half the `1-distance:

‖µ− ν‖TV = 1
2

∑
x∈Ω
|µ(x)− ν(x)|.

For a Markov chain Zt with stationary distribution
π, the mixing rate is the minimum number of steps
τmix to lower the total variation distance between the
distribution of Zt and π below 1/4.

Upper Bounds
Theorem 1. Let a, b, W be an RBM’s parameters
s.t. ‖W‖1‖WT ‖1 < 4, then for the Gibbs sampler:

τmix ≤ 1 + ln (4n)
ln(4)− ln(‖W‖1‖WT ‖1)

where ‖W‖1 := maxj
∑n
i=1 |Wij |.

Proof technique: coupling

A Markovian coupling of a Markov chain Zt
over Ω with transition matrix P is a Markov
chain (Xt, Yt) over Ω× Ω satisfying

Pr(Xt+1 = x′ |Xt = x, Yt = y) = P (x, x′),
P r(Yt+1 = y′ |Xt = x, Yt = y) = P (y, y′).

Aldous (1983) showed that for any coupling
(Xt, Yt) such that there exists an integer-valued
function τ satisfying for all x, y ∈ Ω and ε > 0,

Pr(Xτ(ε) 6= Yτ(ε) |X0 = x, Y0 = y) ≤ ε
then Zt’s mixing rate satisfies τmix ≤ τ(1/4).

Our approach is to couple each node independently,
hidden nodes before visible ones. For the example
below, the probability that Xt+1(h3) = Yt+1(h3) is
the area of the purple region.

This strategy gives us the following lemma.

Lemma. There exists a coupling (Xt, Yt) of the
Gibbs sampler such that

(a) E[dh(X ′t, Y ′t ) |Xt, Yt] ≤ 1
2‖W

T ‖1dv(Xt, Yt) and

(b) E[dv(Xt+1, Yt+1) |X ′t, Y ′t ] ≤ 1
2‖W‖1dh(X ′t, Y ′t ).

Where (X ′t, Y ′t ) denotes the state immediately after
the hidden nodes have been updated; and dh(·, ·) and
dv(·, ·) denote Hamming distances over the hidden
and visible nodes, respectively.

By the law of total expectation, we have

E [dv(Xt+1, Yt+1) |Xt, Yt)] ≤
‖W‖1‖WT ‖1

4 dv(Xt, Yt).

When ‖W‖1‖WT ‖1 < 4, this distance shrinks in
expectation. Markov’s inequality finishes the proof.

Lower Bounds
Theorem 2. Pick any T > 0 and n,m ∈ N even
positive integers. Then there exists W ∈ Rn×m s.t.

‖WT ‖1, ‖W‖1 ≤
2 max(n,m)
min(n,m) ln(4T (n+m))

such that the Gibbs sampler over the RBM with no
bias and weight matrix W has mixing rate τmix ≥ T .

Proof technique: conductance

Given a Markov chain P with stationary distri-
bution π and S ⊂ Ω, the conductance of S is

Φ(S) := 1
π(S)

∑
x∈S,y∈Sc

π(x)P (x, y).

Sinclair (1988) outlines the relationship of con-
ductance and mixing rates as

τmix ≥ max
S⊂Ω:

π(S)≤1/2

1
4Φ(S) .

Let r = 2 ln(4T (n+m))
min(n,m) . We consider an RBM with no

bias and weight matrix illustrated below.

When S is the singleton set consisting of the config-
uration below, we show π(S) ≤ 1/2 and Φ(S) ≤ 1

4T .

The conductance theorem gives a lower bound of T
on the mixing rate.
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