
Mixing Rates for the Gibbs Sampler over Restricted
Boltzmann Machines

Christopher Tosh
Department of Computer Science and Engineering

University of California, San Diego
ctosh@cs.ucsd.edu

Abstract

The mixing rate of a Markov chain (Xt)
∞
t=0 is the minimum number of steps

before the distribution of Xt is close to its stationary distribution with respect to
total variation distance. In this work, we give upper and lower bounds for the
mixing rate of the Gibbs sampler over Restricted Boltzmann Machines.

1 Introduction

Restricted Boltzmann Machines (RBMs) are an important class of undirected graphical model, the
learning of which is integral in many approaches to building deep belief networks [1, 2]. RBMs can
be viewed as a fully connected bipartite graph with the two sets of nodes representing a visible layer
and a hidden layer, all taking values in {0, 1}. A configuration (v, h) ∈ {0, 1}n+m has energy

E(v, h) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
∑
i,j

viWijhj

where the ai’s and bj’s are biases and the Wij’s are the interaction strengths or weights. This energy
function induces the Gibbs distribution over configurations: P (v, h) = 1

Z e
−E(v,h), where Z is the

normalizing constant to make the total probability of the distribution one.

For some applications, such as learning the parameters of an RBM from data, we need to compute
expectations with respect to the Gibbs distribution, which is a hard task [3]. To overcome this
barrier, the approach of contrastive divergence [4] is to approximate the expectation by performing
Markov chain Monte Carlo (MCMC) integration. The accuracy of this method can be guaranteed if
the chosen Markov chain converges rapidly to the Gibbs distribution [5, Chapter 12.6].

1.1 Markov chain theory

A Markov chain is a sequence of random variables (Xt)
∞
t=0 taking values in some space Ω and

satisfying the Markov property: Pr(Xt = x |Xt−1, . . . , X0) = Pr(Xt = x |Xt−1). The transition
probabilities can be viewed as a matrix Q indexed by elements of Ω s.t.

Q(x, y) = Pr(Xt = y |Xt−1 = x).

Q is irreducible if, for all x, y ∈ Ω, there exists a t > 0 s.t. Qt(x, y) > 0. It is aperiodic if

gcd({t : Qt(x, y) > 0}) = 1 for all x, y ∈ Ω.

A distribution π over Ω is a stationary distribution of Q if, when π and P are viewed as matrices
indexed by Ω, then π = πQ. A fundamental result of Markov chain theory says that if a Markov
chain Q is irreducible and aperiodic, then it has a unique stationary distribution. Furthermore, the
distribution of Xt converges to π, regardless of initial distribution [5, Theorem 4.9].
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Unfortunately, convergence is only guaranteed in the limit. To get samples in a finite time, we must
settle for approximation. Given measures µ, ν over Ω, the total variation distance is half the `1-norm
of their difference: ‖µ−ν‖TV := 1

2

∑
ω∈Ω |µ(ω)−ν(ω)|. The mixing rate of a Markov chainQwith

unique stationary distribution π is the function τ(ε) = min{t : maxx∈Ω ‖Qt(x, ·)−π‖TV < ε} for
ε ∈ (0, 1). Taking ε to be any constant less than 1/2 gives us nontrivial results, but by convention
ε is often taken to be 1/4. Thus, where it will cause no confusion, we refer to the mixing time
interchangeably with the quantity τmix := τ(1/4).

1.2 Gibbs sampling

In this paper, we will focus on a particular Markov chain whose limiting distribution is the Gibbs
distribution above: the Gibbs sampler. The state space Ω = {0, 1}n+m is the set of configurations.
For convenience, it will be useful to also think of a configuration X ∈ Ω as a binary-valued (or
binary vector-valued) function, where for example X(vi) ∈ {0, 1} is the setting of the i-th visible
node in the RBM and X(h) ∈ {0, 1}m is the setting of all the hidden nodes in the RBM.

Due to the bipartite nature of the RBM, the visible units are independent of each other given the
hidden units and vice versa. This makes the implementation of the Gibbs sampler appealingly
simple. Denoting σ(x) = 1/(1 + exp(−x)) as the logistic sigmoid, one step of the Gibbs sampler
from state Xt to Xt+1 can be described as follows.

1. For each hidden node hj , set Xt+1(hj) to 1 with probability σ(bj +
∑n
i=1WijXt(vi)).

2. For each visible node vi, set Xt+1(vi) to 1 with probability σ(ai +
∑m
j=1WijXt+1(hj)).

Standard arguments show that the Gibbs sampler is irreducible and aperiodic; moreover, the station-
ary distribution π is our Gibbs distribution. It will be useful for our purposes to explicitly designate
the intermediate state of the Gibbs sampler, after the hidden nodes have been updated but before the
visible nodes are updated. Denote this state intermediate state between Xt and Xt+1 by Xt+1/2.

Long and Servedio [3] gave strong evidence that even approximately sampling from the Gibbs distri-
bution is hard in general for RBMs. It is therefore unlikely that the Gibbs sampler would mix rapidly
in general. However, Long and Servedio’s reduction relies on constructing weight matrices whose
entries can be quite large. In particular, they allow for the weight matrices W whose max-norm,
‖W‖max := maxi,j |Wij |, is allowed to grow super-linearly in n and m. This raises the natural
question of whether anything can be said for sampling from the Gibbs distribution for RBMs whose
weight matrices are smaller in magnitude.

In this paper, we make positive progress in this direction. We are able to show if the weight matrix
W and its transpose WT are sufficiently bounded with respect to its `1-norm, defined as ‖W‖1 =
maxj

∑n
i=1 |Wij |, then the Gibbs sampler mixes rapidly. Formally, we demonstrate the following.

Theorem 2.1 Let a ∈ Rn, b ∈ Rm, W ∈ Rn×m be the parameters for an RBM s.t.
‖W‖1‖WT ‖1 < 4, then the Gibbs sampler satisfies τmix ≤ 1 + ln(4n)

ln(4)−ln(‖W‖1‖WT ‖1)
.

The `1-norm bound on W in Theorem 2.1 can be related to a max-norm bound if we add a sparsity
condition. Consider the bipartite graph that W induces and suppose every node has degree bounded
by d, then we need the non-zero entries of W to grow like 2/d to guarantee rapid mixing. In the
extreme case where d = 1, we get a max-norm bound of 2. On the other hand, the max-norm bound
degenerates to 2/max(n,m) for unrestricted d.

In the other direction, we give lower bounds on the mixing rate for a family of weight matrices.

Theorem 3.1 Pick any T > 0 and n,m ∈ N even positive integers. Then there is a weight matrix
W ∈ Rn×m satisfying ‖W‖max ≤ 2

min(n,m) ln (4T (n+m)) such that the Gibbs sampler over the
RBM with zero bias and weight matrix W has mixing rate bounded as τmix ≥ T .

An immediate consequence of this is that if n = Θ(m) and T = 2min(n,m)/2/4(n+m), then there
is a weight matrix whose max-norm is 1, but the Gibbs sampler still mixes in time T = 2Ω(n).

The rest of the paper is organized as follows. In Section 2, we give a proof for Theorem 2.1. In
Section 3, we give a proof of Theorem 3.1. We conclude with a discussion in Section 4.
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2 Upper bounds for the Gibbs sampler

The goal of this section is to prove the following theorem.
Theorem 2.1. Let a ∈ Rn, b ∈ Rm, W ∈ Rn×m be the parameters for an RBM s.t.
‖W‖1‖WT ‖1 < 4, then the Gibbs sampler satisfies

τmix ≤ 1 +
ln (4n)

ln(4)− ln(‖W‖1‖WT ‖1)
.

We will prove Theorem 2.1 via a coupling argument. A Markovian coupling of a Markov chain Zt
over Ω with transition matrix Q is a Markov chain (Xt, Yt) over Ω× Ω whose transitions satisfy

Pr(Xt+1 = x′ |Xt = x, Yt = y) = Q(x, x′),

P r(Yt+1 = y′ |Xt = x, Yt = y) = Q(y, y′).

The following lemma relates couplings of a Markov chain to the mixing time. It dates back at least
to Aldous [6] and can be found in the form we present, for example, in Jerrum [7, Lemma 4.7].
Lemma 2.2. Let (Xt, Yt) be a Markovian coupling for Markov chain Zt such that there exists
a function τcouple : (0, 1) → N satisfying that for all x, y ∈ Ω and ε > 0, Pr(Xτcouple(ε) 6=
Yτcouple(ε) |X0 = x, Y0 = y) ≤ ε. Then the mixing rate for Zt satisfies τmix ≤ τcouple(1/4).

Let us now specialize to the Gibbs sampler. Let Ω denote as before the space of configurations. To
apply Lemma 2.2 to our situation, it will be useful to define some distances over Ω. For X,Y ∈ Ω,
let dv(X,Y ) = |{vi : X(vi) 6= Y (vi)}| denote the visible Hamming distance. Similarly, define
dh(X,Y ) = |{hj : X(hj) 6= Y (hj)}| as the hidden Hamming distance.

Recall that for the Gibbs sampler, Xt+1/2 denotes the intermediate state after the hidden nodes have
been updated but before the visible nodes have been updated. The following lemma demonstrates
that there exists a coupling whose Hamming distance shrinks in expectation after one step.
Lemma 2.3. Let a, b, W satisfy the conditions of Theorem 2.1. There exists a Markovian coupling
(Xt, Yt) of the Gibbs sampler such that

1. E[dh(Xt+1/2, Yt+1/2) |Xt, Yt] ≤ 1
2‖W

T ‖1dv(Xt, Yt) and

2. E[dv(Xt+1, Yt+1) |Xt+1/2, Yt+1/2] ≤ 1
2‖W‖1dh(Xt+1/2, Yt+1/2).

The proof of Lemma 2.2 is left to the appendix. We are now ready to prove Theorem 2.1 .

Proof of Theorem 2.1. Let (Xt, Yt) be the coupling from Lemma 2.3. Note that this implies that if
dv(Xs, Ys) = 0, then Xt = Yt for all t ≥ s+ 1. Thus, for any t ≥ 1,

Pr(Xt 6= Yt |X0, Y0) ≤ Pr(dv(Xt−1, Yt−1) ≥ 1 |X0, Y0).

By conditioning on the intermediate state (Xt+1/2, Yt+1/2) and using the law of total expectation,

E[dv(Xt+1, Yt+1) |Xt, Yt] = E[E[dv(Xt+1, Yt+1) |Xt+1/2, Yt+1/2] |Xt, Yt] ≤
1

4
‖W‖1‖WT ‖1dv(Xt, Yt).

By applying Markov’s inequality and iterating the law of total expectation, we have

Pr(dv(Xt−1, Yt−1) ≥ 1 |X0, Y0) ≤ E [dv(Xt−1, Yt−1) |X0, Y0] ≤
(

1

4
‖WT ‖1‖W‖1

)t−1

dv(X0, Y0).

For any ε > 0, taking t ≥ 1 + ln (n/ε)(ln(4)− ln(‖W‖1‖WT ‖1))−1 makes the above less than ε.
Lemma 2.2 completes the proof.

3 Lower bounds for the Gibbs sampler

We next turn to giving lower bounds on the mixing rate for the Gibbs sampler. These lower bounds
are of a much different flavor than the upper bounds from Section 2. Specifically, while Theorem 2.1
tells us that any RBM with a weight matrix satisfying certain conditions has a rapidly mixing Gibbs
sampler, the following theorem tells us there exists an RBM meeting some condition for which the
Gibbs sampler is torpidly mixing.
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Theorem 3.1. Pick any T > 0 and n,m ∈ N even positive integers. Then there is a weight matrix
W ∈ Rn×m satisfying ‖W‖max ≤ 2

min(n,m) ln (4T (n+m)) such that the Gibbs sampler over the
RBM with zero bias and weight matrix W has mixing rate bounded as τmix ≥ T .

To prove Theorem 3.1, we will utilize the method of conductance. Given a Markov chain Q, its
stationary distribution π, and a subset S ⊂ Ω, the conductance of S is

Φ(S) :=
1

π(S)

∑
x∈S,y∈Sc

π(x)Q(x, y)

and the conductance of P , denoted by Φ∗, is the minimum conductance of any set S with π(S) ≤
1/2. The following theorem, due to Sinclair [9], relates mixing and conductance of a Markov chain.

Theorem 3.2 (Sinclair [9]). For any aperiodic, irreducible, and reversible Markov chain with con-
ductance Φ∗ and mixing time τmix, τmix ≥ 1

4Φ∗ .

We are now ready to prove Theorem 3.1. In the proof, we construct a weight matrix W such that the
energy function associated with W has two antipodal absolute minima. The fact that there are two
minima means that the singleton set consisting of one of the minima has probability mass less than
1/2 under the Gibbs distribution. Thus, in order to mix rapidly, the Gibbs sampler will need to visit
both minima. We will then show that escaping from one of these minima is a very unlikely event.

Proof of Theorem 3.1. Let r = 2
min(n,m) ln (4T (n+m)). Choose a canonical configuration

(v, h) ∈ {0, 1}n+m such that exactly half of the vi’s are 1 and exactly half of the hj’s are 1.
Now let W ∈ Rn×m such that Wij = r if vi = hj and −r otherwise. Let π(·) denote the Gibbs
distribution for the RBM with weight matrix W and zero bias and let S = {(v, h)} be the singleton
set containing only the canonical configuration. Note that if (v̄, h̄) ∈ {0, 1}n+m satisfies that v̄i = 1
iff vi = 0 and h̄j = 1 iff hj = 0, then π(v, h) = π(v̄, h̄). Thus, π(S) ≤ 1/2.

It is not hard to see Pr(change hj | v) = σ
(
−nr2

)
for all j ∈ [m], where σ(x) = 1/(1+exp(−x))

is the logistic sigmoid as before. Similarly, for any i ∈ [n], Pr(change vi |h) = σ
(
−mr2

)
. Thus,

Pr(leave state (v, h)) ≤ m

1 + exp
(
nr
2

) +
n

1 + exp
(
mr
2

) ≤ 1

4T

Thus the conductance of S (and therefore Φ∗) is upper bounded as

Φ(S) =
1

π(S)

∑
x∈S,y∈Sc

π(x)Pr(we transition from x to y) = Pr(leave state (v, h)) ≤ 1

4T

Theorem 3.2 completes the proof.

4 Discussion

We have presented both upper and lower bounds on the mixing rates of the Gibbs sampler for RBMs.
In the case of upper bounds, we demonstrated that a simple coupling argument suffices whenever
the `1-norm of the weight matrix is suitably bounded. By way of lower bounds, we gave a particular
family of RBMs for which the Gibbs sampler performs poorly even when the weight matrix has a
moderately sized max-norm.

One important takeaway of this work is the impact of the `1-norm of the weight matrix on the
mixing rate of the Gibbs sampler. Indeed, when n and m differ by only a constant factor Theorem
3.1 gives a lower bound of 2Ω(‖W‖1)/n. Unfortunately, this lower bound is no longer meaningful
when ‖W‖1 = o(log(n)). On the other hand, Theorem 2.1 gives meaningful upper bounds when
‖W‖1‖WT ‖1 < 4, but does not apply for weight matrices with larger `1-norms. Closing the gap
between what we can prove to mix rapidly and what we can prove to mix torpidly remains an
interesting research direction.
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A Proofs

Lemma 2.3. Let a, b, W satisfy the conditions of Theorem 2.1. There exists a Markovian coupling
(Xt, Yt) of the Gibbs sampler such that

1. E[dh(Xt+1/2, Yt+1/2) |Xt, Yt] ≤ 1
2‖W

T ‖1dv(Xt, Yt) and

2. E[dv(Xt+1, Yt+1) |Xt+1/2, Yt+1/2] ≤ 1
2‖W‖1dh(Xt+1/2, Yt+1/2).

Proof. Let X,Y be two configurations. Recall the visible and hidden distances are defined as

dv(X,Y ) = |{vi : X(vi) 6= Y (vi)}|,
dh(X,Y ) = |{hj : X(hj) 6= Y (hj)}|.

Because we are giving a Markovian coupling, we need to only describe one transition of our cou-
pling. Let us see how we transition from (Xt, Yt) to (Xt+1, Yt+1).

1. For all hj :

(a) Say w.l.o.g. p(j)
X = Pr(hj = 1 |Xt(v)) ≥ Pr(hj = 1 |Yt(v)) = p

(j)
Y .

(b) Set Yt+1(hj) to 1 w.p. p(j)
Y and to 0 o/w.

(c) If Yt+1(hj) = 1, set Xt+1(hj) to 1. Else set Xt+1(hj) to 1 w.p. p(j) =
p
(j)
X −p

(j)
Y

1−p(j)Y

and

0 o/w.

2. For all vi:

(a) Say w.l.o.g. q(i)
X = Pr(vi = 1 |Xt+1(h)) ≥ Pr(vi = 1 |Yt+1(h)) = q

(i)
Y .

(b) Set Yt+1(vi) to 1 w.p. q(i)
Y and to 0 o/w.

(c) If Yt+1(vi) = 1, set Xt+1(vi) to 1. Else set Xt+1(vi) to 1 w.p. q(i) =
q
(i)
X −q

(i)
Y

1−q(i)Y

and 0

o/w.

To see that this is a valid coupling, we need to verify that the marginal distributions are indeed
correct. We will only look at the hidden variable updates since the visible variable updates are
symmetric. Fix an index hj . It is clear that for the Y chain (or whichever chain has lower probability
of setting hj = 1), the marginal distribution is correct. To see that the X chain follows the correct
distribution, note

Pr(Xt+1(hj) = 1) = Pr(Yt+1(hj) = 1) + (1− Pr(Yt+1(hj) = 1))p(j)

= p
(j)
Y + (1− p(j)

Y )
p

(j)
X − p

(j)
Y

1− p(j)
Y

= p
(j)
X .

Thus we have a valid coupling. We will show that (Xt, Yt) satisfies inequality (2); inequality (1)
follows by symmetrical arguments. By utilizing the independence of visible nodes given hidden
nodes, we have

E[dv(Xt+1, Yt+1) |Xt+1/2, Yt+1/2] =

n∑
i=1

Pr(Xt+1(vi) 6= Yt+1(vi) |Xt+1/2, Yt+1/2)

=

n∑
i=1

∣∣∣q(i)
X − q

(i)
Y

∣∣∣ .
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Through simple algebraic manipulations, we have

∣∣∣q(i)
X − q

(i)
Y

∣∣∣ =

∣∣∣∣∣∣ 1

1 + exp
(
−ai −

∑m
j=1WijXt+1/2(hj)

) − 1

1 + exp
(
−ai −

∑m
j=1WijYt+1/2(hj)

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1− exp

(∑m
j=1Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

))
1 + exp

(∑m
j=1Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

))
∣∣∣∣∣∣

=

∣∣∣∣∣tanh

(∑m
j=1Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

)
2

)∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
m∑
j=1

Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

)∣∣∣∣∣∣ .
Summing over the visible nodes vi, we have

E[dv(Xt+1, Yt+1) |Xt+1/2, Yt+1/2] ≤ 1

2

n∑
i=1

∣∣∣∣∣∣
m∑
j=1

Wij

(
Yt+1/2(hj)−Xt+1/2(hj)

)∣∣∣∣∣∣
≤ 1

2

∑
j :Yt+1/2(hj)6=Xt+1/2(hj)

n∑
i=1

|Wij |

≤ 1

2
‖W‖1dh(Xt+1/2, Yt+1/2).

Inequality (1) can be proven symmetrically.
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