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Abstract

Simple parametric models suffice to describe many idealized
galaxy shapes, but they severely misfit actual galaxies: they are
not flexible enough. Nevertheless, fitting galaxies with simple
parametric models is the current standard practice.

We propose a flexible Bayesian model for images of galaxies. For
each image, a neural network maps the latent variables to the
conditional distribution of pixels’ intensities. We use variational
inference to learn the parameters of the model from a large
collection of training images. The proposed model fits held-out
data more closely than the current standard practice and
estimates model uncertainty.

Idealized galaxies

The Hubble “tuning fork” of galaxy morphology
Credit: Todd Thompson.

Milky Way galaxy
Credit: http://pics-about-space.com/milky-way-galaxy-halo

Actual galaxies

The Whirlpool galaxy—a classic spiral
galaxy.
credit: ESA Hubble / NASA.

NGC 4753, an elliptical galaxy with
interesting dust filaments. credit: SDSS

NGC 60, a spiral galaxy with unusually
distorted arms. credit: SDSS

NGC 1032, an edge-on galaxy. credit: SDSS

An irregular galaxy. credit: NASA

The Sombrero galaxy, halfway between
a spiral and an elliptical. credit: ESA Hubble /
NASA

The model

For a particular image x of a galaxy, let z be a low-dimensional
latent random vector, distributed as a multivariate standard
normal. Given z , we model the observed intensities of the
image’s pixels x = (x1, . . . , xm), as

x |z ∼ N (fµ(z), fσ(z)) .

We take the deterministic functions fµ and fσ to be neural
networks that share some weights. We constrain fσ to produce
diagonal covariance matrices. As shorthand, let the neural
network f (z) := (fµ(z), fσ(z)).

Inference

Given an image’s pixel intensities x = (x1, . . . , xm), we aim to
infer the posterior distribution of z = (z1, . . . , zn).
Unfortunately, integrating z out of the joint distribution (x , z) to
compute the marginal likelihood of x is intractable due to the
nonlinear form of f . Therefore, we turn to variational inference.
Let the variational approximate posterior take the form

q(z |x) = N (gµ(x), gσ(x)),

where gµ and gσ are neural networks that map x to a mean
vector and a diagonal covariance matrix, respectively. As
shorthand, let neural network g(x) := (gµ(x), gσ(x)). By the
standard construction of the variational lower bound,

log p(x) ≥ log p(x)− DKL [q(z |x), p(z |x)]

= Eq [log p(x |z)]− DKL [q(z |x), p(z)] .

Therefore, the distribution q that maximizes this lower bound
minimizes DKL [q(z |x), p(z |x)]: this q is the best approximation
of the specified form to the posterior. Let Wf and Wg be the
weights of neural networks f and g , respectively. Maximizing
over W = (Wf ,Wg) simultaneously finds the q that best
approximates the posterior and the model p that assigns the
highest probability to our data.

The normal-normal KL-divergence DKL [q(z |x), p(z)] is closed
form, but Eq [log p(x |z)] is not. We can nonetheless efficiently
compute unbiased estimates of its gradient, and therefore
maximize the lower bound by stochastic gradient optimization.

We use the stochastic gradient based on the “reparameterization
trick”. Let ε ∼ N (0, I ). Then
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Eq [log p(x |z)]

=Eε
[
∂
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log p (x |z = gσ(x)ε + gµ(x))

]
.

Hence, for e sampled from ε,

∂

∂W
log p (x |z = gσ(x)e + gµ(x))

is an unbiased estimate of the derivative of Eq [log p(x |z)].

Dataset

I 43,444 galaxy images for training.

I Each image is cropped around one prominent galaxy.

I Each image is downscaled to 69× 69 pixels.

Implementation

I Mocha.jl—a neural network toolkit written in Julia, inspired by
Caffe.

I New types of layers to compute the proposed loss function.

I f and g each have two hidden layers composed of 128 hidden
nodes each, with rectified linear units.

I The parts corresponding to the output layers of f and g each
use exponential nonlinearities to ensure that variances are
strictly positive.

I z is 8 dimensional.

I On an Nvidia Tesla K20X GPU, the network performs roughly
200 iterations per second.

Quantitative results

I Held-out dataset of 1000 images of galaxies.

I Current common practice: fit a scaled bivariate Gaussian density
function to each imaged galaxy. We denote the fitted scaled
density function, evaluated at each pixel, x̂ .

I On 97.1% of held-out images, fµ(gµ(x)) has lower mean squared
error over pixels than x̂ .

I On 97.2% of held-out images, the pixels x have higher
probability under N (fµ(gµ(x)), fσ(gµ(x))) than under N (x̂ , σI ),
for every σ > 0.

Sample conditional distributions

Each row corresponds to a different example from a test set. The left column
shows the input x . The center column shows the output fµ(z) for a z sampled
from N (gµ(x), gσ(x)). The right column shows the output fσ(z) for the same
z .

Stochastic neighbor embedding

Galaxies embedded in two dimensions based on the means of their variational
distributions, fµ(x).

Latent space

fµ(z) for z values sampled according to a one-at-a-time experimental design. In
each row, from left to right, one dimension of z is incremented by one standard
deviation per column, while the other dimensions are fixed at zero. The center
column in each row is fµ(0, . . . , 0).
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