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1 Introduction

Galaxies in astronomical images (Figure [I) often resemble
galaxy prototypes (Figure [2)) and possess shared characteris-
tics like spiral “arms”, a “bar”, or a “bulge”. Even irregular
galaxies—typically resulting from the collision of two regu-
lar galaxies—have shapes greatly constrained by physics.

Simple parametric models (e.g. [, 2} 13, 4} 5]]) suffice to de-
scribe many idealized galaxy shapes, but severely misfit ac-
tual galaxies: they are not sufficiently flexible [S)]. The pop-
ular program GALFIT copes with the limitations of simple
parametric models by allowing users to fit an arbitrary num-
ber of mixture components [6} [7]. These mixtures are not
learned from actual galaxies, so the models cannot provide
meaningful uncertainty estimates. To our knowledge, no ex- )
isting galaxy models are learned from a training set, which Figure 1: The Whirlpool galaxy—a
would allow for such uncertainty estimates. Indeed, only [2] Ccrli‘ss;& ?—llix);lflil} ]\%%lﬁxy.

attempts a Bayesian treatment of galaxy shapesﬂ albeit one

based on just a few manually specified parameters. Yet modeling galaxies is an important part of
learning about the universe from large-scale astronomical sky surveys [4} 5, 18l 9], and billions of
images of galaxies are available for training.

Neural networks—high-dimensional parametric models—have
enjoyed great success for classifying images [10]. They have
been effective at discriminating between stars and galaxies [[11] @

and for labeling images of galaxies as possessing or lacking cer-

tain features, such as a “bar” or spiral “arms” [[12]. However, to oo

our knowledge no one has yet reported on meldingmarrying the 5 & F

flexibility of neural networks to a generative probabilistic model @ @

for galaxies. Recent advances in variational inference for non- SBa  sBb g5,
conjugate models [13}/14]] make this possible. To our knowledge,

this is the first publication to report applying these advances to a Figure 2: The Hubble “tuning

problem in the physical sciences fO‘fk’T’ szhgalaxy morphology.
credit: To ompson.
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2 The model

For a particular image x of a galaxy, let z be a low-dimensional latent random vector, distributed
as a multivariate standard normal. Given z, we model the observed intensities of the image’s pixels
x=(x1,...,Tm),as

zlz ~ N (ful2), f2(2)) - (1)

!The galaxy models in [4] and [3] are deterministic though they are embedded in probabilistic models.
% We are informed by a review of reverse citations and personal correspondence with Diederik Kingma.




We take the deterministic functions f,, and fx, to be neural networks that share some weights. We
constrain fy, to produce diagonal covariance matrices. As shorthand, let the neural network f(z) :=

(fu(2), f2(2)).

2.1 Inference

Given an image’s pixel intensities z = (1, ..., %, ), we aim to infer the posterior distribution of
z = (21,...,2,). Unfortunately, integrating z out of the joint distribution (x, z) to compute the
marginal likelihood of z is intractable due to the nonlinear form of f. Therefore, we turn to varia-
tional inference. In keeping with the approaches in [13]] and [14], let the variational approximate
posterior take the form

q(z|z) = N(gu(x), gu(2)), 2

where g, and gs are neural networks that map x to a mean vector and a diagonal covariance ma-
trix, respectively. As shorthand, let g(x) := (g,(z),gs(x)). By the standard construction of the
variational lower bound,

log p(x) > log p(x) — Dkr. [q(2|z), p(2|2)] 3)
= E, [log p(x|2)] — Dxw [q(z]x), p(2)] . 4)

Therefore, the distribution ¢ that maximizes (4) minimizes Dgr, [q(z|z), p(z|x)]: this ¢ is the best
approximation of form (2) to the posterior. Let W and W, be the weights of neural networks f and
g, respectively. Maximizing over W = (W, W, ) simultaneously finds the ¢ that best approximates
the posterior and the model p that assigns the highest probability to our data.

The normal-normal KL-divergence Dy, [¢(z|z), p(z)] has a closed form, but E, [log p(z|z)] is not.
We can nonetheless efficiently compute unbiased estimates of its gradient, and therefore maxi-
mize (@) by stochastic gradient optimization.

The stochastic gradient described in Example 5.1 of [[15)] and [13}114}16]), based on “the reparame-
terization trick”, has the lowest variance among all unbiased estimators. Let ¢ ~ N'(0, ). Then

0 0
o7 Ea logp(a]2)] = 5-E. flogp (a2 = gs(@)e + g, (2))] )
0
= Ec | 5577 logp (alz = gs(@)e + gu(@)) | - (6)
Hence, for e sampled from e,
0
= logp (7|2 = gs(x)e + gu(x)) (7)

ow
is an unbiased estimate of the derivative of E, [log p(x|z)].

3 Experiments

We apply our model to preprocessed 424 x 424-pixel images of galaxies from the Sloan Digital Sky
Survey [17,[18]. In keeping with the approach of [12]], we crop each image to surround just the most
prominent galaxy and downscale these subimages to 69x69 pixels. Based on a blob detection rou-
tine, we exclude images where the most prominent galaxy overlaps with other bright astronomical
objectﬂ leaving 43,444 images for training.

3.1 Implementation

Fitting our model by stochastic gradient descent involves simultaneously training two neural net-
works: f, for specifying the generative model p(z|z), and g, for specifying the variational distribu-
tion ¢(z|x).

An alternative perspective is helpful for implementing the fitting procedure: Both f and g are com-
ponents in a single neural network called a “generalized denoising autoencoder” (GDAE) [19, 20].

3“Deblending” astronomical objects is a related problem, likely facilitated by an accurate galaxy model, but
beyond the scope of this work.



An image x is input to g, yielding ¢, («) and g5, (). The next layer in the GDAE corrupts g,,(x). Its
inputs are g, (), gs(z), and a sample e from N(0, ). Its output is g, (x) + gs(x)e. This output
z serves as the input to f. The output of f is penalized by the expected negative reconstruction
error: —logp (z|z). As a form of regularization, the output of g is penalized too, according to

Dxr, [q(2]7), p(2)].

This perspective facilitates adapting existing neural network software to learn the proposed gener-
ative model. Mocha.jl [21] is a neural network toolkit written in Julia, inspired by Caffe [22]. We
reuse the basic framework from Mocha.jl, but augment it with new types of layers to compute the
proposed loss function. The parts of the network corresponding to f and g each have two fully
connected hidden layers composed of 128 hidden nodes each, with rectified linear units. The parts
corresponding to the output layers of f and g use exponential nonlinearities to ensure that variances
are strictly positive. We set the dimension of z to eight. On an Nvidia Tesla K20X GPU, our net-
work performs roughly 200 iterations per second. (Each iteration involves forward and backward
propagation for one image.) Parameter-specific learning rates are set adaptively [23]].

3.2 Results

First, we examine the trained model qualitatively. Figure[3]shows sample input images to the trained
autoencoder from a held-out set, and the resulting output. The mean of the reconstruction f,,(z), z ~
N (gu(z), gs(x)), resembles a smoothed version of the input. The variance of the reconstruction
fx(z) is low for the backgrounds, which by construction is nearly black in the original images.
Variance is higher for the foreground, particularly near the borders of each galaxy—presumably z
cannot store enough information to represent slight differences in galaxies’ sizes. The intensity of
the third galaxy’s center is particularly uncertain, which may reflect that some but not all galaxies
have a prominent “bulge” in the center.

Figure [4] shows a two-dimensional embedding of a held-out set of galaxies, generated by applying
t-SNE [24]] to the 8-dimensional means g,(x) of the galaxies’ variational distributions. At this
resolution, galaxies are clearly grouped by their orientations. Some clustering of spiral galaxies is
apparent too.

Figure[5|shows f,(z), that is, the mean of p(x|z), for values of z selected by a one-at-a-time exper-
imental design.

Figure 3: Each row corresponds to a different
example from a test set. The left column shows
the input z. The center column shows the output
fu(z) for a z sampled from N (g, (z), g (x)).
The right column shows the output fx (z) for the
same 2.

Figure 4: Galaxies embedded in two dimensions
based on the means of their variational distribu-

tions, f,(x).



Because the model we propose is, to our knowledge, the first galaxy model learned from a training
set, comparing it to existing galaxy models is not straightforward. Comparison is also challenging
because the most common galaxy models do not explicitly model uncertainty.

We also compare the proposed galaxy model to a
current common practice: fitting a scaled bivariate
Gaussian density function to each imaged galaxy.
On a held-out dataset of 1000 images of galaxies,
we compute f,(g,(x)). This amounts to running
the proposed autoencoder with the layer for sam-
pling z replaced with the mean of z. For each im-
age, we also fit a scaled bivariate Gaussian density
to minimize squared error averaged over pixels. The
optimization was performed with BFGS over six
unconstrained parameters: two for the mean, three
for the Cholesky decomposition of the covariance,
and one for the scale. For 971 of 1000 images,
fu(gu(x)) fit z more closely than the best scaled
bivariate Gaussian density. In some sense this is
not surprising, since only the proposed model uses
training data. On the other hand, the parameters of
the proposed model are only optimized by a feed-
forward recognition model rather than an iterative )
algorithm, and only the scaled bivariate Gaussian

model is explicitly trained to minimize residual sum  Fjgyre 5: f.(2) for z values sampled accord-
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of squares. ing to a one-at-a-time experimental design. In
each row, from left to right, one dimension
of z is incremented by one standard devia-
tion per column, while the other dimensions
are fixed at zero. The center column in each
row is f,(0,...,0). The leftmost and right-
most columns are 3 standard deviations from
the mean and thus highly unlikely; we show
these extremes to highlight the effect of each
dimension of z.

Fitting a function to minimize residual squared er-
ror averaged across pixels is analogous to maximiz-
ing the likelihood of the data for a model where
all pixels have a Gaussian distribution with a com-
mon variance. This interpretation lets us compare
our proposed model, conditioned on a particular z,
to the scaled bivariate Gaussian density function in
terms of log likelihood. Now for each image, in ad-
dition to fitting a scaled bivariate Gaussian density
function to each held-out image, we learn the vari-
ance shared by all pixels that assigns the highest likelihood to the image. (The solution has a closed
form.) We compare this to the likelihood assigned to the data by the model we propose, for a par-
ticular z. For 972 of 1000 images, the model we propose better explains the data. Both models treat
each pixel’s value as Gaussian, but only the model we propose assigns different variance to each
pixel.

4 Future work

The proposed model shows little sign of overfitting our existing training set, and billions of addi-
tional images of galaxies are freely available. By increasing the dimension of z and by making our
network deeper, we could almost certainly improve held-out accuracy. Augmenting f with interme-
diate latent layers [14]] would also likely improve held-out accuracy and better model uncertainty
about the structure of the galaxies, rather than just uncertainty at the level of individual pixels.

We could also exploit the rotational and reflective symmetries of galaxies, either through data aug-
mentation or with a network architecture that explicitly enforces it.

Our immediate focus, however, is on embedding the current galaxy model into the model for raw
astronomical images (not cropped around galaxies) described in [5]. Augmenting the broader model
with this data-adaptive galaxy model likely will improve its performance across the board.
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