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1. Review: Variational Inference 4b. Example Hierarchical Variational Models

Let p(z | x) denote a posterior distribution, which is a distribution on d latent variables We can construct variational priors by using normalizing flows [1]. Normalizing flows

z1,...,Z; conditioned on a set of observations x. transform samples from a simple distribution in order to induce more complex
representations.

In variational inference, one posits a family of distributions ¢(z; \) and maximizes the

Evidence Lower BOund (ELBO), Formally, let gg be the distribution for Ay and X be the result after k transformations.
L) = Eq(Z;A) logp(x,z) — log g(z; \)). Then the log density of A is

K
Maximizing the ELBO minimize the KL to the posterior. 0w a( M) — los a(0) — S o ( qop i )
gq()) = logg(X) kzl g | |detlz, )] )

. a HVMs extend the applicability of normalizing flows to discrete variables. We can also
2. Variational Models place a distribution over transformations to build an HVM without Jacobians [2].

While black box variational methods expose variational inference algorithms to all . .
probabilistic models, it remains an open problem to specify a variational distribution 9. Hierarchical ELBO
which both maintains high fidelity to arbitrary posteriors and is computationally tractable.

The entropy in hierarchical variational models is intractable. We can construct a
tractable lower bound by expanding the model and doing variational inference.

Z X

Practitioners add latent variables to form rich distributions over data:

Need a rich
family of
distributions

Use latent
variables

r(Alz, x; )
A

This leads to the objective
L(0,¢) = Eqllogp(x,2) + log r(A | x, z; ¢) — log q(z, \; 0)).

This is looser than marginal VB as variational latent variables imply a repeated
application of Jensen'’s inequality.

Variational Models: View the variational distribution ¢(z) as a “model” and use the same . .
tools one uses to model data. 6. Stochastic Gradients

] . I The black-box gradient for the ELBO is
3. Hierarchical Variational Models VAL = B[V logq(z \)(logp(x.2) — logq(z: A))]

lts variance scales with the learning signal. This can be improved for mean-field
We construct hierarchical variational models by placing priors on tractable families of approximations using the structure of the model:
variational approximations. We focus on the mean-field family here. VL = Eq [V logq(z;; Aj)(log pi(x, z(;)) — log q(z;; Ay))].

The gradient of HVM with a differentiable prior is

Viewing the mean-field distribution plainly as a model of the posterior, a natural way to VoL, 0) = Ey (e (VoA e)V\Lumr(N)]
introduce more complexity is to construct it hierarchically. Adding a one layer +Eg()[VoAle)Vallog r(A | z; ¢) — log g(A; )]
S(€ ) )

hierarchical prior leads to the variational model
+ Es(e) [V@)\(E)Eq<z By 'V logg(z; ) logr(A|z; ¢)ll.

oy _
grvm(z; 0) = / Hq(zi I\ | g(X; 6)dA. If r factorizes in z, we maintain computational efficiency. One example of such an r is
i1 defined via an inverse flow

framework. Additional connections to: empirical Bayes, policy search methods, and log (A | 2) = logr(Ao [ z) + Zlog

HVMS provide richer approximations through the Bayesian hierarchical modeling d ( d et<38k_ 1) )
O\ ’
k=1

annealing.

d
r(olz) =] | r(oi2).
i=1
Here r is a factorized regression under a parameterized transformation. Stochastic
gradient updates are linear in the number of latent variables.

7. Results
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(a) MEAN-FIELD MODEL (b) HIERARCHICAL MODEL

We compare our method on deep exponential families [3] with multiple layers of Poisson
latent variables.

4a. Example Hierarchical Variational Models Model  HVM Mean-Field
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Specifying an HVM requires two components: the variational likelihood ¢(z | A\) and the | P22 |23 W) ] 100-30-15 3480 3550
prior g(; 0). The likelihood factors can be chosen in the same way that mean-field = EXPFAM2(Z2.k. 82(23 W2.4))

. - . . . Science 100 3360 3377
f lly ch . Th I f f ' Z1k | 22, W)
actors are typically chosen e variational prior for a mixture of Gaussian is ) P(z1 | 22, Wik) 100-30 3080 3240
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p(Zn,L,k) = EXPFAM[ (Zn,L,k’ 1)

K | = EXPFAM(Z1t, §1(2, W1 k)
g\ 0) = Z TN (g, Ok )- | _»6 . P(Xn,i | Zn,1, Wo,i)
=1 ’ = Poisson(zllwo,i)

Higher order moments are capture by coocurrence in mixture components. N | | |
We look at predictive perplexity. We get similar results on sigmoid belief networks.
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