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1. Review: Variational Inference

Let p(z | x) denote a posterior distribution, which is a distribution on d latent variables
z1, . . . , zd conditioned on a set of observations x.

In variational inference, one posits a family of distributions q(z;λ) and maximizes the
Evidence Lower BOund (ELBO),

L(λ) = Eq(z;λ)[log p(x, z)− log q(z;λ)].

Maximizing the ELBO minimize the KL to the posterior.

2. Variational Models

While black box variational methods expose variational inference algorithms to all
probabilistic models, it remains an open problem to specify a variational distribution
which both maintains high fidelity to arbitrary posteriors and is computationally tractable.

Practitioners add latent variables to form rich distributions over data:

Use latent 
variables

Need a rich 
family of 

distributions
p(x)?

Variational Models: View the variational distribution q(z) as a “model” and use the same
tools one uses to model data.

3. Hierarchical Variational Models

We construct hierarchical variational models by placing priors on tractable families of
variational approximations. We focus on the mean-field family here.

Viewing the mean-field distribution plainly as a model of the posterior, a natural way to
introduce more complexity is to construct it hierarchically. Adding a one layer
hierarchical prior leads to the variational model

qHVM(z; θ) =
∫  d∏

i=1

q(zi |λi)

 q(λ; θ) dλ.

HVMs provide richer approximations through the Bayesian hierarchical modeling
framework. Additional connections to: empirical Bayes, policy search methods, and
annealing.

4a. Example Hierarchical Variational Models

Specifying an HVM requires two components: the variational likelihood q(z |λ) and the
prior q(λ; θ). The likelihood factors can be chosen in the same way that mean-field
factors are typically chosen. The variational prior for a mixture of Gaussian is

q(λ; θ) =
K∑

i=1

πkN(µk, σk).

Higher order moments are capture by coocurrence in mixture components.

4b. Example Hierarchical Variational Models

We can construct variational priors by using normalizing flows [1]. Normalizing flows
transform samples from a simple distribution in order to induce more complex
representations.

Formally, let q0 be the distribution for λ0 and λ be the result after k transformations.
Then the log density of λ is

log q(λ) = log q(λ0)−
K∑

k=1

log
(∣∣∣∣det(

∂fk
∂zk

)

∣∣∣∣) .
HVMs extend the applicability of normalizing flows to discrete variables. We can also
place a distribution over transformations to build an HVM without Jacobians [2].

5. Hierarchical ELBO

The entropy in hierarchical variational models is intractable. We can construct a
tractable lower bound by expanding the model and doing variational inference.
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This leads to the objective

L̃(θ, φ) = Eq[log p(x, z) + log r(λ | x, z;φ)− log q(z, λ; θ)].

This is looser than marginal VB as variational latent variables imply a repeated
application of Jensen’s inequality.

6. Stochastic Gradients

The black-box gradient for the ELBO is

∇λL = Eq[∇λ log q(z;λ)(log p(x, z)− log q(z;λ))].

Its variance scales with the learning signal. This can be improved for mean-field
approximations using the structure of the model:

∇λiL = Eq(i)[∇λi log q(zi;λi)(log pi(x, z(i))− log q(zi;λi))].

The gradient of HVM with a differentiable prior is

∇θL̃(θ, φ) = Es(ε)[∇θλ(ε)∇λLMF(λ)]

+ Es(ε)[∇θλ(ε)∇λ[log r(λ | z;φ)− log q(λ; θ)]]
+ Es(ε)[∇θλ(ε)Eq(z |λ)[∇λ log q(z;λ) log r(λ | z;φ)]].

If r factorizes in z, we maintain computational efficiency. One example of such an r is
defined via an inverse flow

log r(λ | z) = log r(λ0 | z) +
K∑

k=1

log

(∣∣∣∣∣det(
∂g−1

k
∂λk

)

∣∣∣∣∣
)
,

where

r(λ0 | z) =
d∏

i=1

r(λ0i | zi).

Here r is a factorized regression under a parameterized transformation. Stochastic
gradient updates are linear in the number of latent variables.

7. Results

We compare our method on deep exponential families [3] with multiple layers of Poisson
latent variables.
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We look at predictive perplexity. We get similar results on sigmoid belief networks.
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