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Abstract

Black box inference allows researchers to easily prototype and evaluate an array
of models. Recent advances in variational inference allow such algorithms to
scale to high dimensions. However, a central question remains: How to specify
an expressive variational distribution which maintains efficient computation?
To address this, we develop hierarchical variational models. In a HIERARCHICAL
VM, the variational approximation is augmented with a prior on its parameters,
such that the latent variables are conditionally independent given this shared
structure. This preserves the computational efficiency of the original approxima-
tion, while admitting hierarchically complex distributions for both discrete and
continuous latent variables. We study HIERARCHICAL VM on a variety of deep
discrete latent variable models. HIERARCHICAL VM generalizes other expressive
variational distributions and maintains higher fidelity to the posterior.

1 Introduction

Black box variational inference (BBVI) is important to realizing the potential of modern applied
Bayesian statistics. The promise of BBVI is that an investigator can specify any probabilistic model
of hidden and observed variables, and then efficiently approximate the corresponding posterior
without additional effort (Ranganath et al., 2014).

BBVI is a form of variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008). It sets
up a parameterized distribution over the latent variables and then optimizes the parameters to
be close to the posterior distribution of interest. Typically this is done with the mean-field family,
where each variable is independent and governed by its own variational parameters. Mean-field
inference enables efficient BBVI algorithms, but it is limited by the strong factorization. It cannot
capture dependencies between latent variables—this may be intrinsically important and also
help improve the accuracy of the marginals.

In this paper we develop a black box variational method that goes beyond the mean-field and,
indeed, beyond directly parameterized variational families in general. Our method remains
tractable but uses a richer family of variational distributions, hierarchical variational models, and
finds better approximations to the posterior. Like in traditional Bayesian methods, hierarchical
variational models are built by placing a prior on the parameters of a tractable class of variational
approximations, such as the mean-field, and integrating the prior out.

We develop a general algorithm for fitting HIERARCHICAL VM in the context of black box inference.
Our algorithm maintains the computational efficiency of the original variational family. We
demonstrate our methods with a study of approximate posteriors for several variants of deep
exponential families (with Poisson layers) (Ranganath et al., 2015). In our study, hierarchical
variational models always found better approximations to the exact posterior and formed better
predictions on held out observations.
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2 Variational Models

Black Box Variational Inference. Let p(z |x) denote a posterior distribution, which is a dis-
tribution on d latent variables z1, . . . ,zd conditioned on a set of observations x. In variational
inference, one posits a family of distributions q(z;λ), parameterized by λ, and minimizes the
KL divergence to the posterior distribution (Jordan et al., 1999; Bishop, 2006; Wainwright and
Jordan, 2008).

This is equivalent to maximizing the Evidence Lower BOund (ELBO),

L (λ) = Eq(z;λ)[log p(x,z)− log q(z;λ)]. (1)

Black box methods maximize the ELBO by constructing noisy gradients via samples from the
variational approximation. This avoids model-specific computations, requiring only that the
practictioner write a function to evaluate the model log-likelihood. Following the setting of black
box inference, we now develop a framework for variational distributions.

Variational Models. While black box gradients expose variational inference algorithms to all
probabilistic models, it remains an open problem to specify a variational distribution which both
maintains high fidelity to arbitrary posteriors and remains computationally tractable. The most
common choice of variational model is the mean-field approximation

qMF(z;λ) =
d
∏

i=1

q(zi;λi),

where λi denotes the parameters of the i th latent variable. Mean-field approximations turn the
computationally intractable problem of computing the posterior into an computationally feasible
optimization problem. However, its marginal factorization compromises the expressivity of the
variational model.

Hierarchical Variational Models. Viewing the mean-field distribution plainly as a model of the
posterior, a natural way to introduce more complexity is to construct it hierarchically. That is, we
place a prior distribution q(λ;θ ) with parameters θ on the mean-field parameters and proceed
to marginalize it out. Adding a one layer hierarchical prior leads to the variational model given
by

qHVM(z;θ ) =

∫

�

d
∏

i=1

q(zi |λi)

�

q(λ;θ )dλ. (2)

The variational prior q(λ;θ ) acts as a distribution over variational distributions, such that given
its structure, each posterior variable zi is conditionally independent. Thus we term qHVM as the
hierarchical variational model, which can either be a discrete or continuous distribution. For
simplicity, we focus on one level hierarchies.

The variational prior q(λ;θ ) is parameterized by a vector θ . These are the parameters we optimize
over to find the optimal variational distribution within the class of hierarchical variational models.
The ELBO using the hierarchical variational model is

L (θ ) = EqHVM(z;θ )[log p(x,z)− log qHVM(z;θ )]. (3)

We can lay out the properties required of variational models to ensure that the objective remains
analytically tractable. The first term in the objective is tractable as long as we can sample
from q and q has proper support. The second term with log qHVM(z;θ ), the entropy, contains an
integral (Eq.2) that is in general analytically intractable.

We construct a bound on the entropy term by introducing a distribution r(λ |z;φ)with parameters
φ, and applying the variational principle:

−EqHVM
[log qHVM(z)]≥ −Eq(z,λ)[log q(λ) + log q(z |λ)− log r(λ |z;φ)]. (4)

We can view r as a recursive variational approximation. That is, it is a model for the posterior q
of the mean-field parameters λ given a realization of the latent variables z. Derivations and an
alternative bound are supplied in the appendix.
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Substituting the entropy bound (Eq.4) into the ELBO in Eq.3 gives a tractable lower bound which
we call the hierarchical ELBO, denoted with fL :

fL (θ ,φ) = Eq(z,λ;θ )

�

log p(x,z) + log r(λ |z;φ)−
d
∑

i=1

log q(zi |λi)− log q(λ;θ )
�

. (5)

As all of the terms are known, this objective is tractable. We can fit q and r simultaneously by
maximizing Eq.5 with respect to θ and φ. Maximizing this bound is equivalent to minimizing
an upper bound on the KL-divergence of qHVM to the black box posterior p(z | x). Similar to the
EM-algorithm (Dempster et al., 1977), optimizing θ improves the posterior approximation, while
optimizing φ tightens the upper bound on the KL divergence (improving the recursive variational
approximation). We detail how to optimize this objective in the appendix.

3 Specifying the Hierarchical Variational Model

Hierarchical variational models are specified by a variational likelihood q(z | λ) and prior q(λ).
The variational likelihood can be considered as a typical mean-field distribution. We specify the
variational prior based on normalizing flows, which was previously introduced as a variational
approximation for differentiable probability models in Rezende and Mohamed (2015).

Normalizing Flows. Normalizing flows work by transforming a random variable λ0 with a
known simple distribution such as the standard normal through a sequence of invertible functions
f1 to fK . As each function is applied, the distribution of the output is a contorted version of the
original distribution. This leads to very complicated variational families.

Consider normalizing flows for the variational prior. Formally, let q0 be the distribution for λ0
and λ be the result after k transformations. Then the log density of λ is

log q(λ) = log q(λ0)−
K
∑

k=1

log

��

�

�

�

det(
∂ fk

∂ zk
)

�

�

�

�

�

. (6)

Specifying r. The optimal r is the variational posterior q(λ | z). It is a continuous distribution,
so we could again define r using a normalizing flow. The problem with this approach is that
the intermediary λ’s to λ0 required for the flow are unknown and generally require numeric
inversions. Instead we define a normalizing flow where the inverse flow has a known parametric
form. That is, let the distribution of λ in r be given by a sequence of invertible transforms g1 to
gL of a simple distribution r0. Now let g−1(λ) have a known form. The density of λ in r is

log r(λ | z) = log r(λ0 |z) +
K
∑

k=1

log

�

�

�

�

�

�

det(
∂ g−1

k

∂ λk
)

�

�

�

�

�

�

. (7)

The sequence of intermediary λ can be computed quickly by applying the known inverse functions.
This yields a flexible parameterization of r, which admits for easy computation of both the
gradients of φ and θ . We specify r(λ0 |z) to be a factorized regression, which allows for low
variance gradients.

Optimizing the Hierarchical ELBO We maximize the hierarchical ELBO with stochastic opti-
mization (Robbins and Monro, 1951), which follows noisy, yet unbiased, gradients of the objective.
The stochastic gradients of the hierarchical ELBO maintain the variance properties of the original
variational approximation. We describe this when the original variational approximation is
mean-field.

To optimize Eq.5 we need to compute the stochastic gradient with respect to φ and θ . Due to
the the choice of differentiable prior, we can use the reparameterization gradient on q(λ). Let
ε be a distribution drawn from a standard distribution s such as the standard Gaussian. Then
let λ be written as a function of ε and θ denoted λ(ε;θ ). Next we define V to be the score
function

V =∇λ log q(z |λ).
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Model HIERARCHICAL VM Baseline

Perplexity 100 3570 3570
100-30 3460 3660
100-30-15 3480 3550

NLL 100 3.55 3.63
100-30 3.53 3.58
100-30-15 3.60 3.60

Table 1: NY Times. Perplexity, and negative log-likelihood in units of 106 nats (lower is better).

Then the gradient of the hierarchical ELBO with respect to θ is

∇θeL(θ ,φ) = Es(ε)[∇θλ(ε)∇λLMF(λ)]

+Es(ε)[∇θλ(ε)∇λ[log r(λ |z;φ)− log q(λ;θ )]]

+Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ |z;φ)]]. (8)

The first term is the gradient of the mean-field variational approximation scaled by the chain
rule gradient from reparameterization. Thus hierarchical variational models inherit the variance
reduced gradient (Eq.10) from the mean-field factorization. The second and third terms try to
match r and q. The second term is strictly based on reparameterization, and thus exhibits low
variance. The third term involves potentially a high variance gradient due to the appearance
of all the latent variables. Since the distribution q(z |λ(ε;θ )) factorizes by definition, we can
apply the same variance reduction for r as for done in the mean-field with p. Thus hierarchical
variational models maintains the variance properties of the stochastic gradient of the original
variational family. The best choice of auxiliary model is given by a factorized regression. We
detail this with a more thorough discussion in the appendix.

4 Experimental Results

We have introduced a new class of variational models. See appendix for efficient black box
algorithms for their computation. We compare our proposed variational approximation to the
mean-field approximation on deep exponential families (Ranganath et al., 2015), a class of
hierarchical models where each observation is represented by multiple layers of exponential
family random variables. We benchmark on a collection of news articles from the New York
Times.

We focus on Poisson deep exponential families (DEF) up to depth three in particular, a multifea-
ture generalization of the sigmoid belief network introduced by Neal (1990). In the sigmoid
belief network each observation either turns a feature on or off, whereas in a Poisson DEF each
observation expresses each feature a positive integer number of times.

HIERARCHICAL VM achieves better performance on both perplexity and held-out likelihood across
all models. The mean-field approximation appears to be more sensitive to the architecture used
in the DEF as evidenced by the poor performance of the two layer Poisson DEF on the New York
Times. More experiments can be found in the appendix.

5 Discussion

We present hierarchical variational models: a tractable mechanism to introduce a richer class of
posterior approximation constructed by placing priors on existing tractable variational families.
We achieve a tractable objective by estimating a model of the “posterior” of the latent parameters
in the hierarchical variational model. We show recovery on a toy example and better posterior
approximations on a deep-discrete latent variable model. There are several possible avenues for
future work such as exploring alternative bounds, analyzing our approach in the empirical Bayes
framework, and iteratively expanding our recursive posterior approximation to more than simply
q and r, which yields a form of annealed variational approximation.
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Related Work. Variational models have a rich history. Inspired by kernel density estimation,
this was classically studied by Jaakkola and Jordan (1998), and later revisited by Gershman et al.
(2012), in which one specifies a mixture of Gaussians (MIXTURE) as the variational distribution.
Lawrence (2000) explores a rich class of variational approximations formed by both mixtures
and Markov chains. Recently, the idea of latent variables in the variational approximation has
received some recent interest by Salimans et al. (2013, 2015), but they are limited to cases
where the posterior of the variational latent variables is known or differentiable. These posterior
models capture dependencies that are lost in simpler approximations.

There has been a line of work for variational approximations that capture dependencies in
differentiable probability models (Titsias and Lázaro-Gredilla, 2014; Rezende and Mohamed,
2015; Salimans et al., 2015; Kucukelbir et al., 2015), but there has been limited work in variational
methods that capture dependencies with discrete latent variables. Such methods typically apply
the score function estimator (Ranganath et al., 2014; Mnih and Gregor, 2014). These methods can
be used to posit rich approximations, but are either limited by the noise in stochastic gradients, or
are quadratic in the number of latent variables. For example, Mnih and Gregor (2014) apply such
techniques for variational approximations in sigmoid belief networks, but this approach is limited
to stochastic feed foreword networks. Additionally, the variance increases as the number of layers
increase. Tran et al. (2015) propose copulas (COPULA VI) as a way of learning dependencies in
factorized approximations. Copulas can be extended to the framework of hierarchical variational
models, whereas the direct approach taken in Tran et al. (2015) requires computation squared in
the number of latent variables.

A Optimizing the Hierarchical ELBO

We maximize the hierarchical ELBO with stochastic optimization (Robbins and Monro, 1951),
which follows noisy, yet unbiased, gradients of the objective.

Stochastic Gradient of the ELBO. The score function estimator for the gradient of the ELBO
applies to both discrete and continuous latent variable models. It has strong roots in the pol-
icy search literature and evolutionary algorithms, where it is more commonly known as the
REINFORCE gradient (Williams, 1992). It is given by

∇score
λ L = Eq(z |λ)[∇λ log q(z |λ)(log p(x,z)− log q(z |λ))]. (9)

See Ranganath et al. (2014) for a full derivation. We can construct noisy gradients from Eq.9
by Monte Carlo approximating the expectation. Formally, let S be the number of samples, the
Monte Carlo estimate is

1
S

S
∑

s=1

∇λ log q(zs |λ)(log p(x,zs)− log q(zs |λ)),

where zs ∼ q(z |λ).

In general, the score function estimator exhibits high variance. This is not surprising given that
the score function estimator makes very few restrictions on the class of models, and requires
access only to zero-order information. Roughly, the variance of this estimator scales with the
number of random variables (Ranganath et al., 2014; Mnih and Gregor, 2014).

In mean-field models, the gradient of the ELBO with respect to λi can be written as

∇λi
LMF = Eq(zi ;λi)[∇λi

log q(zi;λi)(log pi(x,z)− log q(zi;λi))], (10)

where log pi(x,z) are the components in the joint distribution that contain zi . This update
is not only local, but it drastically reduces the variance of Eq.9 to make it computationally
efficient.

In the case of differentiable latent variables, one would like to take advantage of model gradients.
One such estimator does this using reparameterization: the ELBO is written in terms of a random
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variable ε, whose distribution s is free of the variational parameters and such that the original z
can be written as a deterministic function z= z(ε;λ). This allows gradients with respect to the
variational parameters to directly propagate inside the expectation:

∇rep
λ L = Es(ε)[(∇z log p(x,z)−∇z log q(z))∇λz(ε;λ)].

Similar to the score gradient, we can construct noisy gradients from this expression via Monte
Carlo. Empirically reparameterization gradients have been shown to have much lower variance
than the score function gradient (Titsias, 2015).

Stochastic Gradient of the Hierarchical ELBO. As discussed in Section 3, the variational
prior q(λ;θ ) can be constructed from both discrete and continuous distributions. However,
due to the efficiency of Monte Carlo estimates for differentiable probability models using the
reparameterization gradient, we focus on differentiable priors such as the normalizing flow.

To optimize Eq.5 we need to compute the stochastic gradient with respect to φ and θ . Due to
the the choice of differentiable prior, we can use the reparameterization gradient on q(λ). Let
ε be a distribution drawn from a standard distribution s such as the standard Gaussian. Then
let λ be written as a function of ε and θ denoted λ(ε;θ ). Next we define V to be the score
function

V =∇λ log q(z |λ).

Then the gradient of the hierarchical ELBO with respect to θ is

∇θeL(θ ,φ) = Es(ε)[∇θλ(ε)∇λLMF(λ)]

+Es(ε)[∇θλ(ε)∇λ[log r(λ |z;φ)− log q(λ;θ )]]

+Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ |z;φ)]]. (11)

The first term is the gradient of the mean-field variational approximation scaled by the chain
rule gradient from reparameterization. Thus hierarchical variational models inherit the variance
reduced gradient (Eq.10) from the mean-field factorization. The second and third terms try to
match r and q. The second term is strictly based on reparameterization, and thus exhibits low
variance. The third term involves potentially a high variance gradient due to the appearance
of all the latent variables. Since the distribution q(z |λ(ε;θ )) factorizes by definition, we can
apply the same variance reduction for r as for done in the mean-field with p. We examine this
below.

Local Learning with r. Let ri be the terms log r(λ |zi) containing zi , and define Vi to be the
local score

Vi =∇λ log q(zi |λi).

Then the last term in Eq.11 can be transformed as

Es(ε)[∇θλ(ε;θ )Eq(z |λ)[V log r(λ |z;φ)]] = Es(ε)

�

∇θλ(ε;θ )Eq(z |λ)

�

d
∑

i=1

Vi log ri(λ |z;φ)

��

.

When ri does not depend on too many variables, this gradient effectively combines both the
computational efficiency of the mean-field and reparameterizations for a hierarchical variational
models for both discrete and continuous latent variables. For example, in the variational model
based on normalizing flows, the term ri only depends on zi as it is factorized. Positing the inverse
model as a factorized regression the optimal choice in maintaining the learning signal of the
mean-field.

Stochastic Gradient with respect to φ. Finally, as the expectation in the hierarchical ELBO
(Eq.5) does not depend on φ, we can simply pass the gradient operator inside the expectation to
obtain

∇φ fL = Eq(z,λ)[∇φ log r(λ |z,φ)]. (12)
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Algorithm 1: Black box inference with HIERARCHICAL VM

Input : Model log p(x,z),
Variational model q(z |λ)q(λ;θ ),
Auxiliary Distribution r(λ |x,z;φ)

Output : Variational Parameters: θ
Auxiliary Parameters: φ

Initialize φ and λ randomly;
while change in ELBO is above some threshold do

Compute unbiased estimate of ∇θL using Eq.11 ;
Compute unbiased estimate of ∇φL using Eq.12 ;
Update φ and λ using stochastic gradient ascent ;

end

Algorithm. The inference procedure is outlined in Algorithm 1, where we evaluate noisy
estimates of both gradients by sampling from the joint q(z,λ). In general, these gradients can
be computed via automatic differentiation systems such as those available in Stan and Theano
(Stan Development Team, 2015; Bergstra et al., 2010); this removes the need for model-specific
computations, and moreover we note that no assumption has been made on log p(x,z) other
than the ability to calculate it.

Table 2 outlines black box methods and their complexity requirements. Hierarchical variational
models equipped with a normalizing flow prior has complexity linear in the number of latent
variables scaled by the length of the flow used to represent r and q.

Black box methods Computation Storage Dependency Class of models

BBVI (Ranganath et al., 2014) O (D) O (D) 7 discrete/continuous
DSVI (Titsias and Lázaro-Gredilla, 2014) O (D2) O (D2) 3 differentiable
COPULA VI (Tran et al., 2015) O (D2) O (D2) 3 discrete/continuous
MIXTURE (Jaakkola and Jordan, 1998) O (KD) O (KD) 3 discrete/continuous
NF (Rezende and Mohamed, 2015) O (KD) O (KD) 3 differentiable
HIERARCHICAL VM w/ NF O (KD) O (KD) 3 discrete/continuous

Table 2: A summary of black box inference methods. D is the number of latent variables;
for MIXTURE, K is the number of mixture components; for NF procedures, K is the number of
transformations.

Multi-level q(λ;θ ). Multi-level hierarchical variational models can contain both discrete and
differentiable latent variables. Higher level differentiable variables can be addressed by repeated
use of the reparameterization trick. Discrete variables in the prior pose a difficulty as the learning
signal used to estimate them has high variance. Local expectation gradients (Titsias, 2015) provide
an efficient gradient estimator for variational approximations over discrete variables with small
support, done by analytically marginalizing over each discrete variable individually. This approach
can be combined with the gradient in Eq.11 to form an efficient gradient estimator.

Inference Networks. Classically, variational inference on models with random variables asso-
ciated with each data point requires finding the optimal variational parameters for each data
point’s variational factor. This process can be computationally prohibitive especially at test time.
The use of inference networks (Dayan, 2000; Stuhlmüller et al., 2013; Kingma and Welling,
2014; Rezende et al., 2014) amortizes the cost of estimating these local variational parameters
by tying them together through a neural network. Specifically, the data point specific variational
parameters are outputs to a neural network with the data point as input. The parameters of the
neural network ζ then become the variational parameters; this reduces the cost of estimating the
parameters of all the data points to estimating parameters of the inference network. Inference
networks can be applied to hierarchical variational models by making both the parameters of the
variational model and auxiliary distribution functions of their conditioning sets.
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Figure 1: Expressivity of the hierarchical variational models, measured by ELBO and KL divergence
after 10,000 iterations following Algorithm 1. Higher ELBOs and lower KLs are better. Green is
the mean-field solution. The true KL divergence and the bound are better with HIERARCHICAL VM.

A.1 Toy Example: Correlated Bernoullis

Consider a toy model with no observations and two binary variables, defined by the following
probability distribution:

z1 = 0 z1 = 1

z0 = 0 0.1 0.4
z1 = 1 0.4 0.1

The mean-field approximation has a hard time capturing this distribution due to both the
presence of negative correlation and that the negative correlation is not strong enough to
bifurcate the optimization problem into two modes. Thus the optimal mean-field approximation
is uniform.

Figure 1 plots the ELBO and KL-divergence for the hierarchical variational models and mean-field,
where we specify a hierarchical variational models with prior and auxiliary distribution given by
a normalizing flow. The KL is improved by over an order of magnitude, and a flow length of 8
exactly recovers the probability table up to numerical precision.
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