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Introduction
We present a model-based reinforcement learning framework based on 
differential dynamic programming (DDP) and sparse spectrum Gaussian 
process regression (SSGPR) [4]. 

Key features of our method
✓          In contrast to recent GP-based reinforcement learning approaches 

[1-3], our method is able to scale high-dimensional dynamical system 
and large dataset.

✓         Our method performs on-line optimization during interactions with 
the physical systems, differs from most related approaches. 

✓         Local trajectory optimization is computationally efficient.
✓         Incremental update of learned models given new samples.
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Problem Formulation
Consider a general unknown dynamical system 

Model Learning via Incremental Sparse Spectrum 
Gaussian Process Regression

Probability distribution over transition dynamics — Gaussian processes

Numerical Results

The goal is to find controls that minimize the expected cost

Our analysis is based on discrete-time representations, e.g.,

GP regression

Fourier feature approximation of shift-invariant kernel functions

Draw r random samples from the distribution

Unbiased approx.

Feature mapping

SE kernel

Posterior

Incremental update given a new sample
Keep track of Cholesky factor Rank-1update
Complexity O(r^2), where r is the number of random feature

Controller Learning via Differential Dynamic 
Programming

Bellman equation for value function

Linear approximation of the SSGP dynamics model around a trajectory

Quadratic approximation of the value function

Optimal control policy

Backward propagation
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PUMA-560 Quadrotor
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Quad rotor example. Each figure show the mean and standard deviation of final trajectory 
costs over 10 independent trials using offline and online learning. We obtained training data 
by performing 150 rollouts (4500 data points) around a pre-specified trajectory
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PUMA-560 example. Each figure show the mean and standard deviation of final trajectory 
costs over 10 independent trials using offline and online learning. We collected 5000 data 
points offline from random explorations
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Goal: fly to 10 different targets from the 
same initial position in 30 time steps. 

Goal: steer the end-effector to the desired 
position and orientation in 50 time steps.
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