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1 Introduction & Related Work

Over the last decade, reinforcement learning (RL) has begun to be successfully applied to robotics
and autonomous systems. While model-free RL has demonstrated promising results [1, 2, 3], it
requires human expert demonstrations and relies on lots of direct interactions with the physical
systems. In contrast, model-based RL was developed to address the issue of sample inefficiency by
learning dynamics models explicitly from data, which helps to provide better generalization [4, 5].
However, model-based methods suffer from two issues: 1) classical value function approximation
methods [6, 7] and modern global policy search methods [5] are computationally inefficient for
moderate to high-dimensional problems; and 2) model errors significantly degrade the performance.

In order to design an efficient RL algorithm, we combine the attractive characteristics of two ap-
proaches: local trajectory optimization and random feature approximations. Local trajectory opti-
mization, such as Differential Dynamic Programming (DDP) [8] are a class of approaches for solv-
ing nonlinear optimal control problems. These methods generate locally optimal control policies
along with an optimal trajectory. Compared to global approaches, DDP shows superior computa-
tional efficiency and scalability to high-dimensional problems [9, 10]. In all of the variations of DDP
[11, 12, 13, 14, 15], the principal limitation is that it relies on accurate and explicit representation
of the dynamics, which is generally challenging to obtain due to the complexity of the relationships
between states, controls and observations in autonomous systems. In this work we take a nonpara-
metric approach to learn the dynamics based on Gaussian processes (GPs). GPs have demonstrated
encouraging performance in modeling dynamical systems [16, 17, 18, 19]. However, standard GP
regression is computationally expensive and does not scale to moderate/large datasets. While a num-
ber of approximation methods exist, a recent method sparse spectrum Gaussian process regression
(SSGPR) [20, 21], stands out with a superior combination of efficiency and accuracy compared to
approximation strategies such as local GPR [22]. SSGPR is based on kernel function approximation
using finite dimensional random feature mappings, introduced in [23].

The proposed method is related to a number of recently developed model-based RL approaches that
use GPs to represent dynamics models [19, 24, 25]. While featuring impressive data-efficiency,
most of these methods are computation-intensive and do not scale to moderate/large size of datasets
(i.e., a few thousands data points). Therefore they are not suitable for data-intensive applications
under real-time or computational power constraints. Furthermore, they do not adaptively update
models or re-optimize policies “on the fly” (during interactions with the physical systems) due to
the significant computational burden. This results in lack of robustness and generalizability that
restrict their applicability in uncertain environment. By combining the benefits of both DDP and
SSGPR, we will show that our approach is able to scale to high-dimensional dynamical systems and
moderate to large datasets.
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2 Proposed Approach

We consider a general unknown dynamical system described by the following differential equation

dx = f(x,u)dt+ dξ, x(t0) = x0, dξ ∼ N (0, σξ), (1)

with state x ∈ Rn, control u ∈ Rm, unknown transition dynamics f , time t and standard Brownian
motion noise ξ ∈ Rp. The RL problem is defined as finding a sequence of controls that minimizes the
expected cost Jπ(x(t0)) = Ex

[
q
(
x(T )

)︸ ︷︷ ︸
Terminal cost

+
∫ T
t0
L
(
x(t), π(x(t)), t

)︸ ︷︷ ︸
Running cost

dt
]
, where u(t) = π(x(t)) is the

control policy. The cost Jπ(x(t0)) is defined as the expectation of the total cost accumulated from
t0 to T . For the rest of our analysis, we denote xk = x(tk) in discrete-time where k = 0, 1, ...,H is
the time step, we use this subscript rule for other variables as well.

2.1 Model learning via incremental sparse spectrum Gaussian process regression

Learning a continuous functional mapping from state-control pair x̃ = (x,u) ∈ Rn+m to state
transition dx ∈ Rn can be viewed as an probabilistic inference with the goal of inferring dx given
x̃. In this subsection, we introduce an approximate Gaussian processes (GP) approach to learning the
dynamics model in Eq. 1. In standard GP regression (GPR), the prior distribution of the underlying
function is defined as f(x̃) ∼ GP(0, k(x̃i, x̃j)), where k is the covariance or the kernel function.
We consider the popular Squared Exponential (SE) covariance function with Automatic Relevance
Determination (ARD) distance measure k(x̃i, x̃j) = σ2

f exp(− 1
2 (x̃i − x̃j)

TP−1(x̃i − x̃j)), P =

diag([ l21 ... l2n+m ]). The hyperparameters of the kernel consist of the signal variance σ2
f and

the length scales for input space l = [l1, ..., ln+m]. Given a sequence of N state-control pairs X̃ =
{(x1,u1), ..., (xN ,uN )} and the corresponding state transition dX = {dx1, ...,dxN}, the prior
joint distribution of the output of a test state-control pair x̃∗ = (x∗,u∗) and the observed outputs
can be written as

(
dX
dx∗

)
∼ N

(
0,

[
G k∗

k∗T k∗

])
, where G = K + σ2

nI, K = [k(x̃i, x̃j)]
N,N
i,j=1, k∗ =

[k(x̃i, x̃
∗)]Ni=1, and k∗ = k(x̃∗, x̃∗). The posterior distribution of the state transition at x̃∗ is derived

as dx∗|X̃,dX, x̃∗ ∼ N (k∗TG−1dX̃, k∗−k∗TG−1k∗). Unfortunately, GPR exhibits significant
practical limitations for learning and inference on large datasets due to its O(N3) computation and
O(N2) space complexity, which is a direct consequence of having to store and invert the matrix G.
This computational inefficiency is a bottleneck for applying GP-based RL in real-time.

Sparse Spectrum Gaussian Process Regression (SSGPR)[20] is a recent approach that provides a
principled approximation of GPR by employing a random Fourier feature approximation of the
kernel function[23]. Based on Bochner’s theorem [26], any shift-invariant kernel functions can be
represented as the Fourier transform of a unique measure

k(x̃i − x̃j) =

∫
Rn

eiω
T(xi−xj)p(ω)dω = Eω [φω(x̃i)φω(x̃j)], φω(x̃) = [cos(ωTx̃) sin(ωTx̃)]. (2)

We can, therefore, unbiasedly approximate the SE kernel function by drawing r random samples

from the distribution p(ω). More precisely k(x̃i, x̃j) ≈
r∑
i=1

φωi
(x̃i)

Tφωi
(x̃j) = φ(x̃i)

Tφ(x̃j), where

φ(x̃) =
σf√
r
[ cos(ΩTx̃) sin(ΩTx̃) ]T, Ω ∼ N (0,P−1)n×r. With this feature mapping, the function

from state-control pair to state transition can be represented as a weighted sum of the basis or the fea-
ture functions wTφ(x̃∗). Assuming the prior distribution of weights of the features w ∼ N (0,Σp),
the posterior distribution of dx∗ can be derived as in the standard Bayesian linear regression

dx∗|X̃,dX, x̃∗ ∼ N (wTφ∗, σ2
n(1 + φ∗TA−1φ∗)), (3)

where φ(x̃∗) = φ∗,w = A−1ΦdX,A = ΦΦT + σ2
nΣ−1

p ,Φ = [ φ(x̃1) ... φ(x̃N ) ]. Thus
the computation complexity becomes O(Nr2 + r3), which is significantly more efficient than GPR
with O(N3) time complexity when the number of random features is much smaller than the number
of training samples. To make this method incremental, so that weights w are updated given a
new sample, we do not store or invert A explicitly. Instead, we keep track of its upper triangular
Cholesky factor A = RTR as in [21]. Given a new sample, the Cholesky factor R is updated
through rank-1 update, with computation complexity O(r2). Weights w can be recovered anytime
using back-substitution with time O(r2).
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2.2 Local approximation and control policy learning

In order to perform trajectory optimization based on the learned model, we create a local model
along a nominal trajectory (x̄k, ūk). Based on the analysis in section 2.1, the SSGPR representation
of the dynamics can be rewritten as xk+1 = F(xk,uk).whereF is an explicit function derived from
the predictive mean of SSGPR (3). Define the control and state variations δxk = xk−x̄k and δuk =
uk − ūk. In this work we consider the first-order approximation of the dynamics. More precisely
we have δxk+1 = Fxk δxk + Fuk δuk, where the Jacobian matrices Fxk and Fuk are computed using
chain-rule Fxk = ∇xk

F = ∂xk+1

∂dxk

∂dxk

∂x̃k

∂x̃k

∂xk
and Fuk = ∇uk

F = ∂xk+1

∂dxk

∂dxk

∂x̃k

∂x̃k

∂uk
. Based on the GP

representation the partial derivative ∂dxk

∂x̃k
is specified as ∂dxk

∂x̃k
≈ ∂E(dxk)

∂x̃k
= wT

([
ΩT

ΩT

]
◦
([
−sk
ck

]
1T

))
,

where sk =
σf√
r

sin(ΩTx̃k), ck =
σf√
r

cos(ΩTx̃k), ◦ is the matrix element-wise multiplication, and
1 is a column vector with n ones. Other partial derivatives can be trivially obtained [24]. We can,
therefore, compute the Jacobian matrices analytically without using numerical methods.

The Bellman equation for the value function in discrete-time is specified as V (xk, k) =

minuk
E
[
L(xk,uk) + V

(
F(xk,uk), k + 1

)
︸ ︷︷ ︸

Q(xk,uk)

|xk

]
.We create a quadratic local model of the value function

by expanding the Q-function up to the second order Qk(x̄k + δxk, ūk + δuk) ≈ Q0
k + Qx

kδxk + Qu
kδuk +

1
2

[
δxk

δuk

]T [
Qxx

k Qxu
k

Qux
k Quu

k

] [
δxk

δuk

]
,where the superscripts of the Q-function indicate derivatives.

For instance, Qxk = ∇xQk(xk,uk). For the rest of the paper, we will use this superscript rule
for L and V as well. To find the optimal control policy, we compute the local variations in control
δûk that maximize the Q-function

δûk = arg max
δuk

[
Qk(x̄k + δxk, ūk + δuk)

]
= −(Quuk )−1Quk︸ ︷︷ ︸

Ik

−(Quuk )−1Quxk︸ ︷︷ ︸
Lk

δxk = Ik + Lkδxk. (4)

The optimal control can be found as ûk = ūk + δûk. The quadratic expansion of the value func-
tion is backward propagated based on the equations that follow Qxk = Lxk + V xk Fxk , Quk = Luk +
V xk Fuk , Qxxk = Lxxk + (Fxk )TV xxk Fxk , Quxk = Luxk + (Fuk )TV xxk Fxk , Quuk = Luuk + (Fuk )TV xxk Fuk , Vk−1 =
Vk + QukIk, V

x
k−1 = Qxk + QukLk, V

xx
k−1 = Qxxk + Qxuk Lk. The second-order local approximation of

the value function is propagated backward in time. We then generate a locally optimal trajectory by
propagating the GP-based dynamics forward in time. Successive application of this scheme would
lead to an optimal control policy as well as state-control trajectory.

A distinctive feature of our RL scheme is that we adaptively update the model and re-optimize the
policy during interactions with the physical system. At each time step we initialize with the policy
obtained on the previous run, and update the learned model by incorporating data point collected in
the previous step. This online learning scheme with “warm-start” lead to very efficient computation
and improved performance compared to offline learning. A high-level summary of the proposed
algorithm is shown in Algorithm 1.

Algorithm 1 Model-based RL via DDP and SSGPR (1-3: offline learning, 4-8: online learning)
1: Initialization: Collect data by applying pre-specified or random controls to the system (1),
2: Model learning: Train GP hyperparameters. Sample random features and compute their weights (sec.2.1).
3: Trajectory optimization: Perform DDP based on the learned GP dynamics model (sec.2.2).
4: for k = 0:H-1 do
5: Interaction: Apply one-step control ûk to the system and move one step forward. Record data.
6: Model adaptation: Incorporate data and update random features’ weights (sec.2.1).
7: Trajectory optimization: Perform DDP with updated model and planning horizon H − k. Initialize

with the previously optimized policy/trajectory (sec.2.2).
8: end for
9: return Optimal control sequence û0,..,H .

3 Experiments and Analysis

We consider 2 simulated RL tasks: quadrotor flight and PUMA-560 robotic arm reaching. Quadrotor
is an underactuated rotorcraft which rely on symmetry in order to fly in a conventional, stable fight
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regime. With 12 dimensional states, 6 degrees of freedom and 4 rotors to control them, the quadro-
tor’s task is to fly to 10 different targets from the same initial position in 30 time steps. PUMA-560
is a 3D robotic arm that has 12 state dimensions, 6 degrees of freedom with 6 actuators on each
joint. The task is to steer the end-effector to the desired position and orientation in 50 time steps.
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We performed experiment#1 and experiment#2 on the quadrotor and PUMA-
560, respectively. In experiment#1, first, we obtained training data by perform-
ing 150 rollouts (4500 data points) around a pre-specified trajectory (different
from the tasks). For offline learning we sampled 1000 random features. Second,
we performed trajectory optimization based on the learned model, and obtained
the optimal control policies. Fig.2a shows the results by applying policies to
the true dynamics. Third, we re-sampled 300, 600, and 1000 random features
respectively and re-optimized the policies and trajectories obtained in the pre-
vious time step, shown in fig. 2b, In experiment#2 we followed similar steps
but used the same sampled random features for both offline and online learning
(without re-sampling of random features). We collected 5000 data points offline
from random explorations (applying random control commands). And sampled
100, 300, 800 random features for both offline and online learning. Results are
shown in fig.3. Computation time for online learning is shown in fig.1. From both experiments we
observed that 1) online learning improves cost reduction performance compared to offline learning
thanks to model adaptation and re-optimization; 2) the performance as well as computation time in-
crease with the number of random features. The selection of random features number would depend
on particular applications with emphasis on accuracy or efficiency.
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Figure 2: Experiment 1. Each figure show the mean and standard deviation of final trajectory costs
over 10 independent trials using offline and online learning.
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Figure 3: Experiment 2. Each figure shows the mean and standard deviation of final trajectory costs
over 10 independent trials for offline and online learning using different number of random features.

4 Conclusion and Future Works

We introduced a model-based reinforcement learning algorithm based on trajectory optimization
and sparse spectrum Gaussian process regression. Our approach is able to scale to high-dimensional
dynamical systems and large datasets. In addition, our method updates the learned models in an
incremental fashion and re-optimizes the control policies during interactions with the physical sys-
tems via successive local approximations. Future works will focus on extending the applicability of
this method, for instance, using predictive covariances to guide exploration and exploitation.

4



References
[1] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks,

21(4):682–697, 2008.

[2] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral control approach to reinforcement
learning. The Journal of Machine Learning Research, 11:3137–3181, 2010.

[3] F. Stulp and O. Sigaud. Path integral policy improvement with covariance matrix adaptation. In Proceed-
ings of the 29th International Conference on Machine Learning (ICML), pages 281–288. ACM, 2012.

[4] C.G. Atkeson and J.C. Santamaria. A comparison of direct and model-based reinforcement learning. In
In International Conference on Robotics and Automation. Citeseer, 1997.

[5] M.P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Foundations and
Trends in Robotics, 2(1-2):1–142, 2013.

[6] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programming (optimization and neural computation
series, 3). Athena Scientific, 7:15–23, 1996.

[7] A.G. Barto, W. Powell, J. Si, and D.C. Wunsch. Handbook of learning and approximate dynamic pro-
gramming. 2004.

[8] D. Jacobson and D. Mayne. Differential dynamic programming. 1970.

[9] Y. Tassa, T. Erez, and W. D. Smart. Receding horizon differential dynamic programming. In NIPS, 2007.

[10] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic programming. ICRA 2014.

[11] E. Todorov and W. Li. A generalized iterative lqg method for locally-optimal feedback control of con-
strained nonlinear stochastic systems. In American Control Conference, 2005, pages 300–306. IEEE,
2005.

[12] E. Theodorou, Y. Tassa, and E. Todorov. Stochastic differential dynamic programming. In American
Control Conference (ACC), 2010, pages 1125–1132. IEEE, 2010.

[13] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive optimal feedback control with learned internal
dynamics models. In From Motor Learning to Interaction Learning in Robots, pages 65–84. Springer,
2010.

[14] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under uncertainty using iterative local
optimization in belief space. The International Journal of Robotics Research, 31(11):1263–1278, 2012.

[15] Y. Pan, K. Bakshi, and E.A. Theodorou. Robust trajectory optimization: A cooperative stochastic game
theoretic approach. In Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.

[16] J. Ko and D. Fox. Gp-bayesfilters: Bayesian filtering using gaussian process prediction and observation
models. Autonomous Robots, 27(1):75–90, 2009.

[17] M. Deisenroth, C. Rasmussen, and J. Peters. Gaussian process dynamic programming. Neurocomputing,
72(7):1508–1524, 2009.

[18] P. Hemakumara and S. Sukkarieh. Learning uav stability and control derivatives using gaussian processes.
IEEE Transactions on Robotics, 29:813–824, 2013.

[19] M. Deisenroth, D. Fox, and C. Rasmussen. Gaussian processes for data-efficient learning in robotics and
control. IEEE Transsactions on Pattern Analysis and Machine Intelligence, 27:75–90, 2015.
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