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Figure 1: Neural network structure

estimators of the form

q(x|fpa(x)) =
NY

n=1

q(x
n

|x1, . . . , xn�1,fpa(x)), (23)

using a neural network with inputs (x,fpa(x)) and output x̂ parameterized as above. Because
the ordering on p̃ places all fpa(x) before x, a trivial way to create a valid model (though
not the most e�cient) would be to simply define a MADE model for the full inverse joint
distribution p̃(x,fpa(x)), with the output of the first N dimensions (corresponding to the
observed nodes) simply discarded. However, we do not need to model the whole inverted
joint p̃(x,y); a more e�cient way of handling this is to create masks M

w

,M

v

as for MADE,
and include fpa(x) as an auxiliary input feeding into all nodes at the intermediate layer,
since every x has every fpa(x) in its parent set. In the original binary MADE setting, this
corresponds to

h(x) = �

w

(b+ (W
x

�M

w

)x+W

pa

fpa(x)) (24)

x̂ = �

v

(c+ (V �M

v

)h(x)) (25)

with additional weights W

pa

for the input layer connections. In practice, we follow the
suggestion of Bengio and Bengio [1] and also include direct connections bypassing the hidden
layer, yielding an output layer

x̂ = �

v

(c+ (V �M

v

)h(x) + (A
x

�M

a

)x+A

pa

fpa(x)) (26)

where A

x

,A

pa

are weight matrices, and M

a

is a binary mask with ones strictly below the
diagonal, and zeros elsewhere.

5.3 Training

Training of this model is atypical — in standard settings, one is limited by the amount of
data present. However, we are armed with a sampler p(x,y) which allows us to generate
e↵ectively infinite training data. Our training procedure for each epoch proceeds as

1. Sample a synthetic dataset {x
`

,y

`

}Ntrain
`=1 and a validation set {x

`

,y

`

}Nvalidate
`=1

2. Compute initial validation error, and loop:

(a) Perform a mini-batch gradient update on ⌘, from the synthetic dataset
(b) Compute a new validation error on the sampled validation set
(c) Continue until validation error increases, or until a set maximum number of

steps is reached

In testing this appears more e�cient than resampling a new synthetic dataset for each new
gradient update, as it allows us to continue learning from each new synthetic dataset until
error increases on a held-out validation set.
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Importance sampling and SMC approximate the posterior as weighted samples:!
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Performance depends crucially on the quality of the proposal           . A standard 
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minimize the reverse KL divergence:
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.
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model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
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to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
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Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation
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w(x) =
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

This is typically performed in the context of a single dataset, minimizing with 
respect to λ. In the amortized inference case we instead want to average over 
all possible datasets. To do so we introduce a function! ! !          which maps 
from some (new) dataset to a parameter setting, and learn hyperparameters   . !
!
This suggests the objective function!
shown at right. Note the expectation !
is with respect to the tractable joint !
distribution, so we can train using !
purely synthetic data, via SGD on!
! ! ! ! ! ! ! ! ! !      .

Approach
Generative models with latent variables x and observed 
variables y define a distribution                                     :!
!
!
!
!
We are interested in characterizing the posterior 
distribution        ! ! ! !   .!
!
To do this we construct an inverse factorization of the 
graphical model! ! ! ! ! ! ! !   . The inverse 
model has the same joint distribution as the genera-
tive model, but a different factorization [5].!
!
Unfortunately, the conditional densities! ! ! ! !   in 
the inverse model have forms we do not know how to 
normalize or sample from in general.!
!
Our approach is to employ neural density estimators to 
learn tractable approximations to these conditional 
densities in the inverse model. These can be learned 
offline, in the sense that no real data is required.

We introduce a new approach to amortizing inference 
in directed graphical models. Inference in graphical 
models entails characterizing the joint distribution of 
latent variables conditioned on some observed data.!
!
We learn a structured neural network to represent an 
inverse factorization of the graphical model. This 
conditional density estimator takes particular values of 
observed random variables as input, and returns an 
approximation to the posterior distribution.!
!
The recognition model can be learned offline, indep-
endent of any particular dataset, before inference is 
performed. The learned representations compile away 
the runtime costs of inference, critical for applications 
that require fast inference when encountering new data.

Figure 1: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. These are all
proposed using the same neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples
by a factor 100, after 10000 samples of burnin. The neural network proposal density for the
weights yields estimated polynomial curves very close to the true posterior solution, albeit
slightly more di↵use. Any small mismatch is easily corrected via importance reweighing.

structure are shown in Figure 2. Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

w

d

⇠ Laplace(0, 101�d) for d = 0, 1, 2;

t

n

⇠ t
⌫

(w0 + w1zn + w2z
2
n

, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and we place a uniform prior on (�10, 10) for z

n

. The goal is to
estimate the posterior distribution of weights for the constant, linear, and quadratic terms,
given any possible collected dataset {z

n

, t

n

}N
n=1. In the notation of the surrounding sections,

we have latent variables x ⌘ {w0, w1, w2} and observed variables y ⌘ {z
n

, t

n

}N
n=1.
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Examples of inverse models
A generative model generates the data; the inverse model generates the latent 
parameters. This inverse model is fully connected due to “explaining away”.

  ̰
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)
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Figure 5: Proposals (shown in blue) and posteriors (in green) for both ↵ and �, estimated
at the end of an SMC run. The posteriors are obtained by re-weighing the SMC output. As
we would hope, the blue proposals look quite similar to the green posteriors, with slightly
broader tails.

Figure 6: Convergence of marginal likelihood estimate as a function of number of par-
ticles, for likelihood-weighted importance sampling, neural network importance sampling,
and neural network sequential Monte Carlo. Plot shows median of 10 runs, with 80th and
20th quantile estimates as error bars.
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are sampled, we end by sampling ↵ and �,
which need both be included in order to evaluate the final terms in the joint target density.

This suggests that the most useful boundary between steps in a sequential Monte Carlo
setting is aligned with the selection of groups of latent variables which we model jointly
with a single conditional density estimator q(x
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|fpa(x
i

)). We reiterate that any inverse
factorization yields a valid importance sampling algorithm; identifying inverse orderings on
latent variables which lead to particularly advantageous sequential Monte Carlo algorithms
in the general case remains an open research question.

Learned sampling distributions for the Poisson example are shown in Figure 5; this is tested
on the same data as analyzed in [8], however we recover estimators which closely resemble
the true posterior, despite having never seen the data itself during training. The relative
convergence speeds of marginal likelihood estimators from likelihood weighted importance
sampling, importance sampling with neural network proposals, and SMC with neural net-
work proposals, are shown in Figure 6.

7 Discussion

Our aim is to greatly increase the space of models for which inference can become push-
button and real-time. To this end we introduce a method by which neural network density
estimators can amortize inference in graphical models. Specifically, we train neural net-
works o✏ine to produce proposals for later importance sampling and sequential Monte Carlo
(SMC) inference. We observe two benefits arising from this approach. First, by design, the
kinds of models in which rapid, high-quality inference can be performed is expanded beyond
low-tree-width discrete Bayesian networks to hierarchical graphical models with mixed-type
conditional probabilities and nodes. Second, application-time inference in such models is
improved in terms of speed to convergence. Furthermore, in pre-computation we train neu-
ral nets to be as near to optimal proposals as possible, and as such the trained neural nets
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
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j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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construction of the masks is such that computing the network output for each x̂

n

requires
only the inputs x1, . . . , xn�1, with the zeros in the masks dropping the connections. With
a logistic function sigmoid as �

v

, then x̂

n

can be interpreted as p(x
n

|x1, . . . , xn�1), and
to compute x̂

n

one does not need supply any value as input to h(x) for the dimensions
x

n

, . . . , x

N

. That is, if one follows all connections “back” through the network from x̂

n

to
the input x, one would find only themselves at x1, . . . , xn�1.

3 Approach

Our approach is two-fold. First, given a Bayesian network that acts as a generative model
for our observed data y given latent variables x, we construct a new Bayesian network
which acts as a generative model for our latent x, given observed data y. This network
is constructed in such a way that the conditional independence structure defined by the
original model p(x,y) = p(x)p(y|x) is identical to that of the new “inverse model”, which
we will refer to as p̃(x,y) = p̃(y)p̃(x|y).
Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to
know these conditional densities p̃(x|y) in the inverse model, then given a particular dataset
y we could directly draw posterior samples simply by sampling from the graphical model.

Thus the second aspect is to learn conditional density estimates for the conditionals in
the inverse model. For these we leverage neural density estimators, which can be trained
“o✏ine”, in the sense that no real data is required. Given a su�ciently flexible density
estimation model, the learned distribution can be exactly the true posterior for every possible
dataset y — however, if the capacity of the neural network model is insu�cient to learn
posteriors exactly, then the approximate model is designed such that it will be particularly
appropriate as a proposal for SMC at each conditional density in the inverse model.

3.1 Learning a family of importance sampling densities

Let ⇡ ⌘ p(x|y) denote the target density we wish to approximate in a single-dataset learning
problem (i.e., with a fixed y). Previous work in adaptive importance sampling, both in
the context of population Monte Carlo (PMC) and sequential Monte Carlo, has used the
reverse Kullback-Leibler (KL) divergence D

KL

(⇡||q
�

) as an objective function, choosing �

to minimize

D

KL

(⇡||q
�

) =

Z
⇡(x) log


⇡(x)

q(x|�)

�
dx. (7)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4]. This can
be optimized via stochastic gradient descent [11], or for specific forms of q by Monte Carlo
expectation maximization [3]; in a sequential estimation setting, it can also be estimated
online [5]. For a su�ciently flexible model family q(x|�), this can learn the target density
exactly, bringing the KL-divergence to 0; otherwise, the approximation will be appropriate
for further refinement via importance sampling.

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if we assume y 2 Y and � 2 #, then
learning an explicit mapping ' : Y ! # allows performing approximate inference for p(x|y)
with only the computational complexity of evaluating the function ', which will typically
be cheap. The tradeo↵ is that the training of ' itself may be quite involved.

We wish to generalize this, learning a family of distributions q(x|y), parameterized by
the observed data y. To this end, suppose that � = '(⌘,y), where the function ' is
parameterized by a set of higher-level parameters ⌘. We would like a choice of ⌘ which
performs well across all datasets y. We can frame this as minimizing the expected value of
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
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i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
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to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
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Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as
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p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

A regression model!
(generates data)

An inverse model!
(generates latents)

Learn a mapping 
from data to latents

Conditional density estimation

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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