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Summary

We introduce a new approach to amortizing inference
in directed graphical models. Inference in graphical
models entails characterizing the joint distribution of
latent variables conditioned on some observed data.

We learn a structured neural network to represent an
inverse factorization of the graphical model. This
conditional density estimator takes particular values of
observed random variables as input, and returns an
approximation to the posterior distribution.

The recognition model can be learned offline, indep-
endent of any particular dataset, before inference is
performed. The learned representations compile away
the runtime costs of inference, critical for applications
that require fast inference when encountering new data.

Approach

Generative models with latent variables x and observed
variables y define a distribution p(x,y) = p(x)p(y|x):

p(x,y) = Hp (z;|PA(z;)) Hp (y;]PA(y;))

We are interested in characterizing the posterior
distribution 7(x) = p(x|y).

To do this we construct an inverse factorization of the
graphical model p(x,y) = p(y)p(x|y). The inverse
model has the same joint distribution as the genera-

tive model, but a different factorization [5].

Unfortunately, the conditional densities p(x;|PA(x;)) in
the inverse model have forms we do not know how to
normalize or sample from in general.

Our approach is to employ neural density estimators to
learn tractable approximations to these conditional
densities in the inverse model. These can be learned
offline, in the sense that no real data is required.

Examples of inverse models

A generative model generates the data; the inverse model generates the latent

parameters. This inverse model is fully connected due to “explaining away”.
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In multilevel models (e.g. hierarchical Bayesian models) we can take leverage
any factorization in the inverse model to run an SMC algorithm for graphical
models [4], sweeping through successively larger sets of latent variables.
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Learning a family of importance sampling proposals

Representative results
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Importance sampling and SMC approximate the posterior as weighted samples:

B(xly) = 3 Wib, (%) p(x.y) W, =
k=1

B w(Xk)
wix) = q(x|\) k > w(x;)

Performance depends crucially on the quality of the proposal ¢(x|)). A standard
approach for learning these proposals [1,2] is to fix a parametric family, and then
minimize the reverse KL divergence:

- m(x)

Di(rllar) = [ #x)log | T

This is typically performed in the context of a single dataset, minimizing with
respect to A. In the amortized inference case we instead want to average over
all possible datasets. To do so we introduce a function A = (7, y) which maps
from some (new) dataset to a parameter setting, and learn hyperparameters 7.

dx

This suggests the objective function
shown at right. Note the expectation
IS with respect to the tractable joint
distribution, so we can train using ~ /
purely synthetic data, via SGD on

an(n) — 4:p(x,y) [_vn lOg Q(X‘W(na y))]

J(n) = / kn(ml|gn)p(y)dy
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- p(xly)
p(Y)/p(X\Y) log Lq(x[o(n,¥))_
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Visualization in non-conjugate robust regression
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Fast convergence in a hierarchical Poisson model
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Marginal likelihood

Conditional density estimation

dxdy

We use a mixture of Gaussians Paily)  Plazles, y)
as our parametric family, and
define ¢(n,y) to be a multilayer

neural network.

For high dimensional outputs
we use a masking scheme
based on MADE [3].
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