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Abstract

We introduce a new approach for amortizing inference in directed graph-
ical models. Inference in graphical models entails characterizing the joint
distribution of latent random variables conditioned on observed random
variables. We describe a procedure for constructing and learning a struc-
tured neural network which represents an inverse factorization of the graph-
ical model, resulting in a conditional density estimator that takes as input
particular values of the observed random variables, and returns an approx-
imation the posterior distribution of the latent variables. This recognition
model can be learned offline, independent from any particular dataset, prior
to performing inference. The output from this network can be used either
directly as a crude approximate estimator, or refined via importance sam-
pling or sequential Monte Carlo to provide consistent estimates of posterior
expectations and unbiased estimates of the marginal likelihood.

1 Introduction

Our goal is to greatly increase the space of models for which inference can become automatic.
In graphical models with continuous and non-Gaussian conditional densities, or in graphical
models whose factor graph representation contains loops, exact inference methods are not
available and one must resort to variational approximations or sampling methods. As an
alternative approach, we construct neural network models which themselves are trained to
perform Bayesian inference directly, given a model specification.

An amortized inference procedure [8, 13] takes a model as its input, and generates an
artifact which then can be leveraged for accelerating future inference tasks. In the context
of Bayesian networks, this entails learning a function which maps from data — that is,
settings of the observed nodes — to values or distributions over the latent variables.

In this work, we take a new approach to amortized inference in graphical models by consid-
ering it in the context of the sequential Monte Carlo (SMC) for graphical models algorithm
introduced in Naesseth et al. [11]. The SMC algorithm targets a sequence of densities which
is constructed by adding in factors from a factor graph one-at-a-time, culminating in a final
density which is itself the entire graphical model. We structure our sequence of densities
such that the observed variable nodes come first; then the latent variables are added one at a
time. Critical to performance of sequential Monte Carlo schemes and importance sampling
in general is the choice of proposal density. We introduce a modification of the masked
autoregressive distribution estimator (MADE) [7] which is appropriate for real-valued mul-
tivariate conditional density estimation, and use this to learn expressive neural network
factor representations from a family which is sufficiently flexible to recover (in some cases)
the exact posterior density; when not exact, or when an approximate posterior is insufficient,
the mismatch can be corrected for via SMC with a small number of particles.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {t,}; (middle) with dependency structure inverted, a generative model
for the latent variables wy, w1, we; (right) showing the explicit neural network structure of
the inverse conditional distribution p(wo.2|21.5,t1.n5). Here we place a Laplace prior on each
regression weight w,, and have Student-t likelihoods p(t, |2, wo.2). New datasets {2, t, }Y_;
can be input directly into the joint density estimator ¢,, to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each z; in
a set of random variables z1,...,xy, the network structure specifies a conditional density
pi(z;|PA(z;)), where PA(x;) denotes the parent nodes of x;. The joint distribution over N
latent random variables x and M observed random variables y is defined as

N M
p(x,y) 2 Hp(inPA(wi)) Hp(yijA(yj)); (1)

the inference goal is to characterize the posterior distribution 7(x) = p(x|y).

Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p(x,y) = p(y)p(x|y), but with
a different factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p(x;|PA(x;)), where PA(x;) are parents of x; in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “offline”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over y,, which are conditionally independent given x, in the inverse model
p(x]y)p(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density ¢(x|-), and computing importance weights w(x) = p(x,y)/q(x]|")
which, for K samples of x, yields a posterior approximation

’LU(Xk)

K
p(x = 5xk X); = : 2
p( |Y) g:l”k? ( ) Wi Zjlilw(xj) ( )

The efficiency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {x,};
(middle) with dependency structure 1nverted (rlght) showing neural conditional density
estimators. Each y,, ~ Poisson(A,t,), with )\n ~ Gamma(a, §) and gamma priors on «, f3.
The learned factor ¢, is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family g(x|A), where X is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence Dxr(||gx) as an objective function, choosing A to mini-
mize

Dicarllor) = f wx)1og | 7o ax. ®)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|A) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning A explicitly for a fixed value of y,
we learn a mapping from y to A. More explicitly, if y € ) and A\ € ¢, then learning an
explicit mapping ¢ : ) — 9 allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function ¢. The tradeoff is
that the training of ¢ itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions ¢(x|y), parameterized by the observed data y. Suppose that A = ¢(n,y),
where the function ¢ is parameterized by a set of higher-level parameters 7. We would like
a choice of n which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J(n) defined as

T(n) = / Dicr(nllan)p(y)dy (4)

= / p(y) | p(x|y)log {q(ﬁ;{(?y))] dxdy (5)

= Epxy) [~ log q(x[p(n,y))] + const. (6)
which has a gradient V,7 (1) = Eyx.y) [—Vylog ¢(x]e(n,y))] -

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit n by stochastic gradient descent, estimating the expectation of the gradient
V,J (1) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely offline — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (effectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model g(x|¢(n,y)), allowing use of any differentiable representation for g.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down ¢(x|y) into a product of smaller conditional densities, each of the form g;(x;|PA(x;)).
We take advantage of this structure by defining more parameter-efficient representations of
q(x|-) that reuse replicated inverse conditional densities, and for more efficient inference via
a sequential Monte Carlo algorithm.
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Figure 3: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. All proposals use
the same pre-trained neural network. The neural network proposal for the weights yields
estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

2.2 Conditional neural density estimation

We particularly wish to construct the inverse factorization p(x|y) (and our proposal model
q(+)) in such a way that we deal naturally with the presence of head-to-head nodes, in which
one random variable may have a very large parent set. As in our example regression model, it
is quite common to have generative models which factorize in the joint distribution, but have
complex dependencies in the posterior. To address this we model such groups of random
variables x; jointly, with a neural conditional density estimator q(x;|¢;(n;, PA(x;))) using a
masked feed-forward network which extends MADE [7] for use on real-valued data, and for
modeling conditional densities. Details are reserved for an extended version of this paper.

2.3 Sequential Monte Carlo for hierarchical models

In hierarchical models like that of Fig. 2 we can con-
struct a sequential decomposition of the graphical
model to run a sequential Monte Carlo algorithm. In
a simple importance sampling algorithm, at inference
time we propose all latent variables simultaneously
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by sampling from ¢(x|y), followed by a final impor- oo EEEEEa e
tance weighting step. By contrast, an SMC algorithm STl
for graphical models [11] sweeps through a sequence
of target densities defined on successively larger sets
of latent variables, following the ordering defined by
the inverse model p(x|y). In this context the learned
approximations to each p(x;|PA(x;)) aim to recover a
sequence of optimal incremental proposal densities.
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Figure 4: Representative output
from the Poisson model: proposals
(shown in blue) and posteriors (in
green) for both o and 3, estimated
at the end of an SMC run.

3 Discussion

Representative results for the regression model are shown in Figure 3; learned distributions
for the Poisson example are shown in Figure 4, tested on the actual power pump failure
data. We recover estimators which closely resemble the true posterior, despite having never
seen the data itself during training.

Though we presented this primarily as a manner by which we compile away application-time
inference costs, from another perspective the neural network itself can be seen as the desired
artifact: we provide instead a graphical-model-regularized neural network training algorithm
that produces neural networks which compute interpretable structural representations that
account for uncertainty in a way that mimics inference in a structured graphical model.

We thank Tom Jin and Jan-Willem van de Meent for their helpful discussions and comments.



References

[1]

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-
layer neural networks. In Advances in Neural Information Processing Systems, vol-
ume 99, pages 400-406, 1999.

Christopher M Bishop. Mixture density networks. 1994.

Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin, and Christian P
Robert. Adaptive importance sampling in general mixture classes. Statistics and Com-
puting, 18(4):447-459, 2008.

Julien Cornebise, Eric Moulines, and Jimmy Olsson. Adaptive methods for sequential
importance sampling with application to state space models. Statistics and Computing,
18:461-480, 2008.

Julien Cornebise, Eric Moulines, and Jimmy Olsson. Adaptive sequential Monte Carlo
by means of mixture of experts. Statistics and Computing, 24:317-337, 2014.

Edward I George, UE Makov, and AFM Smith. Conjugate likelihood distributions.
Scandinavian Journal of Statistics, pages 147-156, 1993.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked
autoencoder for distribution estimation. In Proceedings of the 32nd International Con-
ference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 881-889,
2015.

Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic rea-
soning. In Proceedings of the Thirty-Sizth Annual Conference of the Cognitive Science
Society, 2014.

Shixiang Gu, Zoubin Ghahramani, and Richard E Turner. Neural adaptive sequential
Monte Carlo. In Advances in Neural Information Processing Systems 28, 2015.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks:
The combination of knowledge and statistical data. Machine learning, 20(3):197-243,
1995.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schon. Sequential Monte
Carlo for Graphical Models. In Advances in Neural Information Processing Systems
27. 2014.

Judea Pearl and Stuart Russell. Bayesian networks. Computer Science Department,
University of California, 1998.

Andreas Stuhlmiiller, Jacob Taylor, and Noah Goodman. Learning stochastic inverses.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 3048-3056. 2013.

Benigno Uria, Tain Murray, and Hugo Larochelle. RNADE: The real-valued neural au-
toregressive density-estimator. In Advances in Neural Information Processing Systems,
pages 21752183, 2013.



