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Overview

» We view the variational free energy and its accompanying evidence lower bound as a first-order term from a

perturbation of the true log partition function and derive a power series of corrections.

» This allows for example to get better estimates of normalizing constants or to correct predictions in latent
variable models whose permutation-invariant parameters are self-pruned and ignored by the variational
approximation (e.g. matrix factorization).

Variational Inference

p(x)e H™

—log Z = — Iog/u(x) e HX¥dx  or  E[f(x)] = /f(x) p(x)e F™¥dx .

If these are not analytically tractable, we introduce a variational approximation q(x) = Zlu(x)e_"’q(x)
q

Given a random variable x with probability distribution p(x) = , we often need to compute

whose parameters are found minimizing the free energy

Flq] = KL[q||p] — log Z = E, _log ZX; —log Z = Eg[V(x)] — log Z4 ,

where we have defined V(x) = H(x) — Hg(x).

Perturbative corrections

Perturbation theory aims at finding approximate solutions to a problem given exact solutions of a simpler
related sub-problem (the VB solution in our case).

Normalizing constant. By defining Hy = H, + AV = (1 — A\)Hy; + AH (notice that this gives
Hy = H and Hy = H g), We can write

— log / u(x)e_HA(X)dx = —log Z, — log E,[e Y ™)]
\? A3

= —log Z, + AE |V] ——
—_——
Flg] for A =1

Knowing the VB solution, we can therefore correct our estimate of log Z using higher order terms.
Note that this may not be a convergent series, but lead to an asymptotic expansion only.
Expectations. Defining Ey as the expectation with respect to px(x) = p(x)e="™ so that E = E
and E; = Eg, we get:
[ F(x) p(x)e M)AV dx  Ey [F(x)e V()]
f”(x)e—ﬁo(x)—AV(x) dx  Ep (e=AV(X)]

Eo [f(x) (1 —AV XV 2Vvig )] RUTNE

Eq |(V = EIVI)*| + 51 Eq |[(V = EIVIY’| +

Exlf(x)] =

Eo[(L-AV+3v2—Jvit...)
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We can correct the expectation w.r.t the VB solution using higher order terms.
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Example: Variational Matrix Factorization

p(x, y|r=2.0, ﬁ_%:O.75) p(x, y|r=2.0, ﬁ_%zl.O) p(x, y|r=2.0, ﬁ_%:1.25)
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y ~ N(0, a;l)

VB solution:
g(x) =N ) s aly) =N(py,v, ") o VBt

A—A VB-2nd

Predictions + corrections:

1
H(x,y) = B(r — xy)? + cx® + a,y?]

Halx, ¥) = o [x = 12 + 3y — 1))

V(x,y) = H(x,y) — Hq(x, y) 0.0} | | . . .
E\[xy] = Eo[xy] — ACovq[xy, V(x,y)] £ ... 00 05 1.0 15 20 2.5
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Example: Variational Inference for Sparse GP Regression

» We can compute the predictive mean and covariance using a sparse approximation for the GP and then
include the perturbative corrections.

y,-(t,-) = 3sinc(t,-) €; N N(O, 0'2)

N—
x(t;)

x ~ GP(0, K) with RBF kernel

N=1000, m=10, o0=1.5
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