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Overview

I We view the variational free energy and its accompanying evidence lower bound as a first-order term from a
perturbation of the true log partition function and derive a power series of corrections.

I This allows for example to get better estimates of normalizing constants or to correct predictions in latent
variable models whose permutation-invariant parameters are self-pruned and ignored by the variational
approximation (e.g. matrix factorization).

Variational Inference

Given a random variable x with probability distribution p(x) = µ(x)e−H(x)

Z
, we often need to compute

− logZ = − log

∫
µ(x) e−H(x)dx or E [f (x)] =

∫
f (x)µ(x)e−H(x)dx .

If these are not analytically tractable, we introduce a variational approximation q(x) = 1
Zq
µ(x)e−Hq(x)

whose parameters are found minimizing the free energy

F [q] = KL[q||p]− logZ = Eq

[
log

q(x)

p(x)

]
− logZ = Eq[V (x)]− logZq ,

where we have defined V (x) = H(x)− Hq(x).

Perturbative corrections

Perturbation theory aims at finding approximate solutions to a problem given exact solutions of a simpler
related sub-problem (the VB solution in our case).
Normalizing constant. By defining Ĥλ = Hq + λV = (1− λ)Hq + λH (notice that this gives

Ĥ1 = H and Ĥ0 = Hq), we can write

− log

∫
µ(x)e−Ĥλ(x)dx = − logZq − logEq[e

−λV (x)]

= − logZq + λEq[V ]︸ ︷︷ ︸
F [q] for λ = 1

−
λ2

2
Eq

[
(V − Eq[V ])2

]
+
λ3

3!
Eq

[
(V − Eq[V ])3

]
+ . . .

Knowing the VB solution, we can therefore correct our estimate of logZ using higher order terms.
Note that this may not be a convergent series, but lead to an asymptotic expansion only.
Expectations. Defining Eλ as the expectation with respect to pλ(x) = µ(x)e−Hλ(x), so that E = E1

and Eq = E0, we get:

Eλ[f (x)] =

∫
f (x) µ(x)e−Ĥ0(x)−λV (x) dx∫
µ(x)e−Ĥ0(x)−λV (x) dx

=
E0

[
f (x)e−λV (x)

]
E0

[
e−λV (x)

]
=
E0

[
f (x)

(
1− λV + λ2

2
V 2 − λ3

3!
V 3 ± . . .

)]
E0

[(
1− λV + λ2

2
V 2 − λ3

3!
V 3 ± . . .

)] 1
1−z=1+z+z2+...

=

= E0[f (x)]︸ ︷︷ ︸−λCov0[f (x),V ]− λ2E0[V ]Cov0[f (x),V ] +
λ2

2
Cov0[f (x),V

2]± . . .

We can correct the expectation w.r.t the VB solution using higher order terms.

Example: Variational Matrix Factorization

Model:

r = xy + ε

ε ∼ N (0, β−1)

x ∼ N (0, α−1x )

y ∼ N (0, α−1y ) r
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VB solution:

q(x) = N (µx, γ
−1
x ) , q(y) = N (µy, γ

−1
y )

Predictions + corrections:

H(x, y) =
1

2

[
β(r − xy)2 + αxx

2 + αyy
2
]

Hq(x, y) =
1

2

[
γx(x − µx)

2 + γy(y − µy)
2
]

V (x, y) = H(x, y)− Hq(x, y)

Eλ[xy ] = E0[xy ]− λCov0[xy ,V (x, y)]± . . . 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Example: Variational Inference for Sparse GP Regression

I We can compute the predictive mean and covariance using a sparse approximation for the GP and then
include the perturbative corrections.

yi(ti) = 3sinc(ti)︸ ︷︷ ︸
x(ti)

+εi , εi ∼ N (0, σ2)

x ∼ GP(0,K) with RBF kernel
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