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Abstract

The variational approximation is known to underestimate the true variance of a
probability measure, like a posterior distribution. In latent variable models whose
parameters are permutation-invariant with respect to the likelihood, the variational
approximation might self-prune and ignore its parameters. We view the variational
free energy and its accompanying evidence lower bound as a first-order term from
a perturbation of the true log partition function and derive a power series of cor-
rections. We sketch by means of a “variational matrix factorization” example how
a further term could correct for predictions from a self-pruned approximation.

1 Introduction

We consider the probability measure

p(x) =
µ(x)e−H(x)

Z

on a random variable x. We are often concerned with the computation of the negative log partition
function

− logZ = − log

∫
dµ(x) e−H(x) ,

or of expectations E[f(x)] =
∫
dµ(x) f(x)e−H(x) under p. As these are typically not analytically

tractable, the variational approximation introduces a tractable approximation measure q(x) =
1
Zq
µ(x)e−Hq(x), and adjusts the parameters in Hq in such a way that the free energy which is

defined via the Kullback Leibler divergence

F [q] = D(q, p)− logZ = Eq

[
log

q(x)

p(x)

]
− logZ

is minimal. This yields the form

F [q] = − logZq + Eq[V ] (1)

where V = H −Hq . The minimizer of F usually underestimates the variance of p, and symmetries
are sometimes not broken [1, 3], so that the approximation self-prunes. In Sec. 3 we illustrate
this effect with a small matrix factorization example, and then show how predictions (expectations
E[f(x)] of f(x) under the posterior p) could be improved.

2 Perturbation theory

Perturbation theory aims to find approximate solutions to a problem given exact solutions of a
simpler related sub-problem (the VB solution in our case). If we define Ĥλ = Hq + λV =

1



(1 − λ)Hq + λH , we have Ĥ1 = H and Ĥ0 = Hq . Let us now define the perturbation expan-
sion using the cumulant expansion of logEq[e−V ], where Eq denotes the expectation with respect
to the variational distribution:

− log

∫
dµ(x) e−Ĥλ(x) = − logZq − logEq[e

−λV (x)]

= − logZq + λEq[V ]︸ ︷︷ ︸
F [q] for λ=1

−λ
2

2
Eq

[
(V − Eq[V ])

2
]
+
λ3

3!
Eq

[
(V − Eq[V ])

3
]
+ . . . (2)

At the end, of course, we set λ = 1. The first order term in (2) yields the variational free energy
F [q] in (1), i.e. the negative of the usual evidence lower bound (ELBO). It is therefore reasonable to
correct it using higher orders. Note that this may not be a convergent series, but lead to an asymptotic
expansion only. The approach is similar to corrections to Expectation Propagation [4, 6], but the
computation of the correction terms here require less effort. A variational linear response correction
can also be applied [5].

Expectations. In a similar way, we can compute corrections for expectations of functions. We
first define Eλ as the expectation with respect to pλ(x) = µ(x)e−Ĥλ(x) (we then have Eq = E0)
and notice that

Eλ[f(x)] =

∫
dµ(x) f(x) e−Ĥλ(x)∫
dµ(x) e−Ĥλ(x)

=

∫
dµ(x) f(x) e−Ĥ0(x)−λV (x)∫
dµ(x) e−Ĥ0(x)−λV (x)

=

∫
dµ(x) f(x) e−Ĥ0(x)

(
1− λV (x) + λ2

2 V
2(x)− λ3

3! V
3(x)± . . .

)
∫
dµ(x) e−Ĥ0(x)

(
1− λV (x) + λ2

2 V
2(x)− λ3

3! V
3(x)± . . .

)
=
E0

[
f(x)

(
1− λV + λ2

2 V
2 − λ3

3! V
3 ± . . .

)]
E0

[(
1− λV + λ2

2 V
2 − λ3

3! V
3 ± . . .

)] . (3)

Using 1
1−z = 1 + z + z2 + . . . we can re-expand the part from the denominator1 in (3) to get

1

1− (λE0[V ]− λ2

2 E0[V 2] + λ3

3! E0[V 3]± . . .)
= 1+λE0[V ]− λ

2

2
E0[V

2]+λ2E0[V ]2± . . . (4)

Putting this together with the numerator in (3) yields

Eλ[f(x)] =

(
E0[f(x)]− λE0[f(x)V ] +

λ2

2
E0[f(x)V

2]± . . .
)

×
(
1 + λE0[V ]− λ2

2
E0[V

2] + λ2E0[V ]2 ± . . .
)

= E0[f(x)]− λE0[f(x)V ] + λE0[f(x)]E0[V ] +
λ2

2
E0[f(x)V

2]

− λ2

2
E0[f(x)]E0[V

2]− λ2E0[f(x)V ]E0[V ] + λ2E0[f(x)]E0[V ]2 ± . . .

= E0[f(x)]− λCov0[f(x), V (x)]− λ2E0[V (x)]Cov0[f(x), V (x)]

+
λ2

2
Cov0[f(x), V

2(x)]± . . . (5)

3 Variational Matrix Factorization

As toy example, we factorize a scalar “matrix” r = xy + ε with ε ∼ N (ε; 0, β−1). In the parlance
of recommender systems (as we’ll later consider sparsely observed matrices R) a user (modelled by
a latent scalar x) rates an item (modelled by y). One rating

r ∼ N (r;xy, β−1)

1Note 1
1−z

= 1 + z + z2 + . . . only converges for |z| < 1.
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Figure 1: The expected affinity E[xy] under p(x, y|r, β) as a Monte Carlo ground truth (MC), and
its approximations. We plot the results with r = 2 and αx = αy = 1. With these parameters the VB
estimate is zero for β−

1
2 > 2/

√
3 (see Fig. 2 and analysis in [2]), but is accurately corrected through

the first order term in (7). Under less noise symmetry is broken (β−
1
2 < 2/

√
3), and the first order

correction (6) is remains accurate.

is observed. Assume priors p(x) = N (x; 0, α−1x ) and p(y) = N (y; 0, α−1y ). Let q(x, y) = q(x)q(y)

be a factorized approximation with q(x) = N (x;µx, γ
−1
x ) and q(y) = N (y;µy, γ

−1
y ). We will

investigate how the variational prediction of a rating E0[xy] and its further terms in (5) change as
the observation noise standard deviation β−

1
2 increases.

Motivation. This toy example is the building block for computing the corrections for real recom-
mender system models, i.e. matrix factorization models with sparsely observed ratings matrices and
K latent dimension for both user and item vectors. As shown in the Supplementary Material, the
corrections for the predicted rating from user i to item j, E[xTi yj ], can be shown to be the sum of
K(Ni+Mj) corrections like the ones presented in this section, when q fully factorizes. Ni denotes
the number of items rated by user i and Mj the number of users that have rated item j. We expect
the correction to be largest when Ni and Mj are small.

Before commencing to technical details, consider Fig. 1, which is accompanied by Fig. 2. When
there is little observation noise, with β−

1
2 being small, the variational Bayes (VB) solution E0[xy]

closely matches E[xy], obtained from a Monte Carlo (MC) estimate. As the noise is increased, the
VB solution stops breaking symmetry and snaps to zero (see Fig. 2, and Nakajima et al.’s analysis
[3]), after which E0[xy] = 0 will always be predicted. The first order correction gives a substantial
improvement towards the ground truth, although with no guarantee that (5) is a convergent series,
the inclusion of a second order term incorporates a degradation.

Technical details. The terms that constitute V (x, y) = H(x, y)−Hq(x, y) are

H(x, y) =
1

2

[
β(r − xy)2 + αxx

2 + αyy
2
]

Hq(x, y) =
1

2

[
γx(x− µx)2 + γy(y − µy)2

]
.

Let’s look at the first order of the expansion in (5),

E[xy] = Eq[xy]− λEq[xyV ] + λEq[xy]Eq[V ] ,

bearing in mind that q is the minimizer of F [q] = − logZq + Eq[V ]. The terms that we require in
the expansion are

Eq[xy] = µxµy

Eq[xyV ]− Eq[xy]Eq[V ] = −1

2

[
µxµy

{
−2αx

γx
− 2

αy
γy
− 8

β

γxγy

}
+ µ2

x

{
2βr

γy

}
+ µ2

y

{
2βr

γx

}
+

2βr

γxγy
− µxµ3

y

{
2β

γx

}
− µ3

xµy

{
2β

γy

}]
, (6)
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Figure 2: The posterior p(x, y|r, β− 1
2 ), and the accompanying fully factorized VB solution (circular

contours), for r = 2. The approximation breaks symmetry at β−
1
2 = 2√

3
. Fig. 1 presents corrections

to the mean of p(xy|r, β− 1
2 ).

with the latter being Covq[xy, V ]. To illustrate the effect of the correction, consider high observation
noise β−

1
2 > 2√

3
in Fig. 1. The VB approximation locks on to a zero mean [3], and does not break

symmetry [1]. With µu = µv = 0 for example, the only remaining term to first order is (using
λ = 1)

E[xy] ≈ β

γxγy
r , (7)

and the correction is verifiably in the direction of r.

4 Summary

We’ve motivated, by means of a toy example, the benefit of and framework for a perturbation the-
oretical view on variational inference. Outside the scope of the workshop, current and future work
encompass the application to matrix factorization (see Supplementary Material), variational infer-
ence of stochastic differential equations, Gaussian Process (GP) classification, and the variational
approach for sparse GP regression.
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Supplementary Material

Matrix factorization - general case

We now consider a recommender system with N users, M items and K latent dimensions. An N ×
M sparse rating matrix R can be constructed using each user’s list of rated items in the catalogue. An
element rij in R contains the rating that user i has given to item j. Matrix factorization techniques
factorize the rating matrix as R = XTY + E, where X is an K × N user matrix, the item matrix
Y is K ×M and the residual term E is N ×M . We denote the set of observed entries in R by R.

We use a Gaussian likelihood for the ratings, i.e. rij ∼ N (rij ;x
T
i yj , β

−1), and isotropic Gaussian
priors for both user and item vectors:

p(xi) =

K∏
k=1

N (xik; 0, α
−1
x ) p(yj) =

K∏
k=1

N (yjk; 0, α
−1
y ) . (8)

It is common to take take a fully factorized approximation for user i’s and item j’s vectors over
dimensions k = 1, . . . ,K:2

q(xi) =
∏
k

q(xik) =
∏
k

N (xik;µik, γ
−1
ik ) q(yj) =

∏
k

q(yjk) =
∏
k

N (yjk; ηjk, ζ
−1
jk ) .

The main quantity of interest in a recommender system is the predicted rating E[xTi yj ], whose
first order correction requires the computation of Cov0[xTi yj , V (X,Y)]. With our assumptions, the
functions H and Hq in V (X,Y) = H(X,Y)−Hq(X,Y) are

H(X,Y) =
1

2

β∑
(i,j)

(rij − xTi yj)
2 + αx

∑
i

xTi xi + αy
∑
j

yTj yj

 ,

Hq(X,Y) =
1

2

∑
i,k

γik(xik − µik)2 +
∑
j,k

ζjk(yjk − ηjk)2
 .

Counterintuitively, we see that while we are only interested in correcting E0[x
T
i yj ], both H and

Hq depend also on terms relative to items not seen by user i and users that have not rated item
j. As we will see shortly, however, these terms do not contribute in Cov0[x

T
i yj , V (X,Y)]. In its

unsimplified form,

Cov0
[
xTi yj , V (X,Y)

]
= Cov0

xTi yj , 12
β ∑

(n,m)∈R

(rnm − xTnym)2 + αx

N∑
n=1

xTnxn + αy

M∑
m=1

yTmym

−
N∑
n=1

K∑
k=1

γnk(xnk − µnk)2 −
M∑
m=1

K∑
k=1

ζmk(ymk − ηmk)2
}]

In the computation of Cov0
[
xTi yj , V (X,Y)

]
, all the terms in V (X,Y) that do not depend on xi

or yj are constants and leave the covariance unchanged: considering the user vectors we have for
example

Cov0

[
xTi yj , αx

N∑
n=1

xTnxn

]
= Cov0

[
xTi yj , αxx

T
i xi
]
.

In a similar way, among the likelihood terms
∑

(n,m)∈R(rnm − xTnym)2 we need only to keep the
ones corresponding to the items rated by user i and the users that rated item j (i.e. only the i-th row
and j-th column of the ratings matrix). DefiningM(i) as the set containing the indices of the items
rated by user i and N (j) the set containing the indices of the users that rated item j, we have

Cov0

xTi yj , ∑
(n,m)∈R

(rnm − xTnym)2

 = Cov0

xTi yj , ∑
m∈M(i)

(rim − xTi ym)2 +
∑

n∈N(j)

n 6=i

(rnj − xTnyj)
2

 .

2Notice that we now use η and ζ for item mean and precisions, to avoid subscript spaghetti.
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After removing all the constant terms the simplified covariance is given by

Cov0
[
xTi yj , V

]
= Cov0

xTi yj , β2 ∑
m∈M(i)

(rim − xTi ym)2 +
β

2

∑
n∈N(j)

n 6=i

(rnj − xTnyj)
2+

+
αx
2
xTi xi +

αy
2
yTj yj −

1

2

K∑
k=1

γik(xik − µik)2 −
1

2

K∑
k=1

ζjk(yjk − ηjk)2
]

=
β

2
Cov0

xTi yj , ∑
m∈M(i)

(rim − xTi ym)2

+
β

2
Cov0

xTi yj , ∑
n∈N(j)

n 6=i

(rnj − xTnyj)
2

+

+
1

2
Cov0

[
xTi yj , αxx

T
i xi + αyy

T
j yj −

K∑
k=1

γik(xik − µik)2 −
K∑
k=1

ζjk(yjk − ηjk)2
]

=
β

2
fx(xi,yi,Yi) +

β

2
fy(xi,yj ,Xj) +

1

2
g(xi,yj) .

where Xj is the restriction of X to the columns indexed by N (j), and Yi is the restriction of Y to
the columns indexed byM(i).

Computation of g(xi,yj). Thanks to our choice of a fully factorized VB distribution and the
bi-linearity of the covariance operator we have

g(xi,yj) = Cov0

[
K∑
k=1

xikyik,

K∑
k=1

(
αxx

2
ik + αyy

2
jk − γik(xik − µik)2 − ζjk(yjk − ηjk)2

)]

=

K∑
k=1

Cov0
[
xikyik, αxx

2
ik + αyy

2
jk − γik(xik − µik)2 − ζjk(yjk − ηjk)2

]
.

Computation of fx(xi,yi,Yi) and fy(xi,yj ,Xj). We now focus below only on the computa-
tion of fx(xi,yi,Yi), as the results for fy(xi,yj ,Xj) are analogous.
We rewrite the term fx(xi,yi,Yi) as

fx(xi,yi,Yi) = Cov0

xTi yj , ∑
m∈M(i)

(rim − xTi ym)2


=

∑
m∈M(i)

Cov0
[
xTi yj , (rim − xTi ym)2

]
=

∑
m∈M(i)

Cov0
[
xTi yj , r

2
im − 2rimxTi ym + (xTi ym)2

]
=

∑
m∈M(i)

{
−2rimCov0

[
xTi yj ,x

T
i ym

]
+Cov0

[
xTi yj , (x

T
i ym)2

]}

and analyse separately each of the covariance terms. Thanks to the full factorization of the VB
posterior we have

Cov0
[
xTi yj ,x

T
i ym

]
= Cov0

[
K∑
k=1

xikyjk,

K∑
k=1

xikymk

]
=

K∑
k=1

Cov0 [xikyjk, xikymk] .
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For Cov0
[
xTi yj , (x

T
i ym)2

]
we get instead

Cov0
[
xTi yj , (x

T
i ym)2

]
= Cov0

 K∑
k=1

xikyjk,

K∑
k=1

(xikymk)
2 + 2

K∑
k=1

∑
p<k

xikymkxipymp


=

K∑
k=1

Cov0
[
xikyjk, (xikymk)

2
]
+Cov0

 K∑
k=1

xikyjk, 2

K∑
k=1

∑
p<k

xikymkxipymp


=

K∑
k=1

Cov0
[
xikyjk, (xikymk)

2
]
+

K∑
k=1

Cov0

xikyjk, 2
∑
c 6=k

xicymc

xikymk


=

K∑
k=1

Cov0
[
xikyjk, (xikymk)

2
]
+

K∑
k=1

2

∑
c 6=k

E0[xicymc]

Cov0 [xikyjk, xikymk]

Combining these results we obtain

fx(xi,yi,Yi) =
∑

m∈M(i)

K∑
k=1

{
− 2rimCov0 [xikyjk, xikymk] + Cov0

[
xikyjk, (xikymk)

2
]
+

+2

∑
c 6=k

E0[xicymc]

Cov0 [xikyjk, xikymk]


=

∑
m∈M(i)

K∑
k=1

−2
rim −∑

c6=k

E0[xicymc]

Cov0 [xikyjk, xikymk] + Cov0
[
xikyjk, (xikymk)

2
]

If we then define r(k)im as the expected contribution to the rating rim from component k, i.e.

r
(k)
im = rim −

∑
c6=k

E0[xicymc] = rim −
∑
c6=k

µicηmc ,

we can rewrite fx(xi,yi, Yi) as

fx(xi,yi, Yi) = Cov0

xTi yj , ∑
m∈M(i)

(rim − xTi ym)2


=

∑
m∈M(i)

K∑
k=1

{
−2r(k)imCov0 [xikyjk, xikymk] + Cov0

[
xikyjk, (xikymk)

2
]}

=
∑

m∈M(i)

K∑
k=1

Cov0

[
xikyjk, (r

(k)
im − xikymk)

2
]
.

For each of the |M(i)| points we will then only need the correction for K univariate problems
(that are far simpler to compute). Notice in particular that this result is only possible thanks to our
assumption of fully factorized priors and VB posteriors, as there are no correlations among variables
of the same user/item vectors to be taken into account when computing the covariances.
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Putting all together: corrections for the predicted ratings

Combining the results above, the first order correction for the required expectation of this matrix
factorization problem is given by

Cov0
[
xTi yj , V

]
=
β

2

∑
m∈M(i)

K∑
k=1

Cov0

[
xikyjk, (r

(k)
im − xikymk)

2
]
+

+
β

2

∑
n∈N(j)

n 6=i

K∑
k=1

Cov0

[
xikyjk, (r

(k)
nj − xnkyjk)

2
]
+

+
1

2

K∑
k=1

Cov0
[
xikyik, αxx

2
ik + αyy

2
jk − γik(xik − µik)2 − ζjk(yjk − ηjk)2

]
=

K∑
k=1

β2 ∑
m∈M(i)

Cov0

[
xikyjk, (r

(k)
im − xikymk)

2
]
+

+
β

2

∑
n∈N(j)

n 6=i

Cov0

[
xikyjk, (r

(k)
nj − xnkyjk)

2
]
+

+
1

2
Cov0

[
xikyik, αxx

2
ik + αyy

2
jk − γik(xik − µik)2 − ζjk(yjk − ηjk)2

]}

Due to the fully factorized VB approximation, the computation of these covariances does not require
vector operations and can be easily done manually or using symbolic mathematics software such
as Sympy3. The required non-central Gaussian moments can be computed using Wick’s theorem.
Assuming that rij is an unobserved rating that we want to predict4, the final expression for the
covariance term in the first order correction of E[xTi yj ] is

Cov0
[
xTi yj , V

]
=

K∑
k=1

 ∑
m∈M(i)

[
β

γik
µikηjkη

2
mk −

βr
(k)
im

γik
ηjkηmk +

β

γikζmk
µikηjk

]
+

+
∑

n∈N(j)

n 6=i

[
β

ζjk
µikηjkµ

2
nk −

βr
(k)
nj

ζjk
µikµnk +

β

γnkζjk
µikηjk

]
+

+

[(
αx
γik

+
αy
ζjk

)
µikηjk

]}

To illustrate the effect of the correction we can compute its value in the case where symmetries in
the user vectors ui are not broken, i.e. µi = 0 (this may happen for “noisy” users with only few
rated items). In this case, the expected rating with a first order correction is (with λ = 1)

E[xTi yj ] ≈
K∑
k=1

 ∑
m∈M(i)

[
βr

(k)
im

γik
ηjkηmk

] .

We see that the expectation depends on the rating given by user i to other items in the catalogue
weighted by how similar their vectors are to yj (so that we have a positive contribution from r

(k)
im to

3http://www.sympy.org
4 This means that the likelihood term in V (X,Y) does not depend on xT

i yj . In the toy example presented
in Section 3 instead we were computing a correction on an observed rating.
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the predicted rating only if the k-th components of the means of the j-th and m-th item vectors have
the same direction).

9


	Introduction
	Perturbation theory
	Variational Matrix Factorization
	Summary

