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Abstract

Bayesian nonparametric models have become popular recently due to its flexibility
in identifying the unknown number of clusters. However, the flexibility comes at
a cost for learning. Thus, Small Variance Asymptotic (SVA) is one of the promis-
ing approach for scalability in Bayesian nonparametric models. SVA approach for
count data is also developed in which the likelihood function is replaced by the
Kullback–Leibler divergence. In this paper, we present the Large Sample Asymp-
totic for count data when the number of sample in Multinomial distribution goes
to infinity, we derive the similar result to SVA for scalable clustering.

1 Introduction

Traditional clustering algorithms often require an explicit choice of the model size in advance. For
example, in K-means clustering, the number of clusters must be selected a priori even though this
quantity is not known for many practical applications. Therefore, instead of performing model
selection, Bayesian nonparametric (BNP) models [5, 1, 17] emerged as a promising approach to
infer the complexity from the data directly. This flexibility allows Bayesian nonparametric models
being able to identify the suitable number of clusters. However, the flexibility of BNP comes at a
cost: training BNP models on massive data sets is notoriously challenging.

To address the scalability problem of BNP, a recent thread of research, namely Small Variance
Asymptotic (SVA) of BNP model has gained much attention [9, 8]. Small Variance Asymptotic for
BNP [9] provide scalability, but still maintain the main properties of Bayesian nonparametric mod-
eling. For generic case of distributions (non Gaussian case), the asymptotic extension is proposed in
[8]. Then, the recent work has exploited this scalable approach for various tasks [15, 18, 19, 7, 11].

In this paper, we present the Large Sample Asymptotic (LSA) for count data in which we let the
number of samples (or the number of time tossing a dice in Multinomial distribution) goes to infinity,
then we derive the hard clustering assignment for Bayesian nonparametric model. Our proposed
analysis can be seen the alternative view to the small variance asymptotic for count data [8].

2 Small Variance Asymptotic

Recent works of Small Variance Asymptotic (SVA) are motivated by the connection between K-
means and Gaussian Mixture Model (GMM): as the variances of Gaussian goes to zero, the GMM
becomes K-means [2, 9]. The asymptotic derivation to DPM and HDP are introduced in [9], opening
the line of work in BNP for scalability.

The data type is not restricted to Gaussian case, but it can be generic, such as count data. For non-
Gaussian cases of distributions, SVA derivation is proposed in [8] which is suitable for discrete-data.
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Specifically, the SVA for exponential family distributions is presented [8] as follows:

p(zi = k |) =
{

Dφ (xi,µk) usedk
λ newk

where Dφ denotes for the Bregman divergence for the likelihood function, such as KL divergence
for Multinomial distribution.

Machine learning practitioners have widely applied SVA to approximately estimate Multinomial
distribution using KL divergence [10] for scalability. The asymptotic work of (infinite) HMM [15]
and Dependent DPM [3] offer scalable analysis for sequential data. DP-space [19] is for scalable
subspace clustering, JUMP-means [7] is for scalable Markov Jump Processes, and Lee et al [11] is
for Bayesian hierarchical clustering.

3 Large Sample Asymptotic for Count Data

We manipulate the Multinomial likelihood in the Kullback–Leibler divergence form which also
involve the number of sample n, then we derive the hard assignment in the limit as n→ ∞.

3.1 Large Sample Asymptotic

We have a data point x = (x1, ...xD) ∈ RD, where each element xi is a count in D bins, and the
Multinomial parameter φ = (φ1, ...,φD) ∈RD such that ∑

D
d=1 φd = 1. To express the probability of

observation (or a histogram) x given a parameter φ , the Multinomial likelihood is defined as:

p(x | φ) = n!

∏
D
d=1 xd!

D

∏
d=1

φ
xd
d (1)

where n = ∑
D
d=1 xd is a number of samples or trials.

As discussed in [16] that independent observations constituting a histogram are multiplied together
to recover the joint probability of all measurements. Thus, an invariant likelihood across histogram
counts is the geometric mean of the Multinomial likelihood p(x | φ)

1
n . We term this quantity as the

average Multinomial likelihood and define the average log-likelihood L̄≡ log p(x | φ)
1
n .

L̄ =
1
n

logn!− 1
n

D

∑
d=1

logxd!+
D

∑
d=1

xd

n
logφd . (2)

Using Stirling’s approximation [4], we have the expansion of logn! = n logn− n+O(logn). We
apply Stirling’s approximation into Eq. 2.

L̄ = logn−
D

∑
d=1

xd

n
logxd +

D

∑
d=1

xd

n
logφd +

1
n

(
O(logn)+

D

∑
d=1

O(logxd)

)
.

As we have logn = ∑
D
d=1

xd
n logn, then the above formula becomes

L̄ =−
D

∑
d=1

xd

n
log

xd

n
+

D

∑
d=1

xd

n
logφd +

1
n

(
O(logn)+

D

∑
d=1

O(logxd)

)
.

The normalized histogram can be viewed as a probability distribution x̂ = (x̂1, ...x̂D) =
( x1

n , ...
xD
n

)
and substituted accordingly.

L̄ =−DKL (x̂||φ)+
1
n

(
O(logn)+

D

∑
d=1

O(logxd)

)
.

We have defined in Eq. 2 as L̄ = log p(x | φ)
1
n , thus equivalently we obtain:

p(x | φ) = exp

{
−nDKL (x̂||φ)+O(logn)+

[
D

∑
d=1

O(logxd)

]}
. (3)
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We have presented the Multinomial likelihood using the KL divergence and the number of samples
(or trials) n. In the following section, we utilize the above form into Gibbs sampling form for
Dirichlet Process Mixture. Then we let the number of samples n goes to infinity to obtain the Large
Sample Asymptotic in which the probabilistic inference becomes the hard clustering for scalability.

3.2 Scalable Clustering for Dirichlet Process Mixture using Large Sample Asymptotic

We now present the hard clustering algorithm for Dirichlet Process Mixture [1] using the Large
Sample Asymptotic on count data. Let {xi,zi}N

i=1 be a collection of data observation xi and the
corresponding latent assignment zi. Let K be the number of active clusters, φ = {φ 1, ...,φ K} be the
parameter representing for each cluster in DPM. Let G be the prior distribution for generating the
observation x. We consider the sampling zi conditional on other variables:

p(zi = k | z−i,xi,φ ,α,G) ∝

{
Nk× p

(
xi | φ zi

)
used k

α×
∫

φ
p(xi | φ)dG(φ) new k

(4)

where Nk is the number of data point in component k, N = ∑
K
k=1 Nk is the total number of data points,

and α is the concentration parameter.

By an abuse of notation, we are using Nk to denote the number of data points in cluster k in DPM
and n (lower-case) is the number of trial in Multinomial distribution that will be later assumed to go
to infinity.

Assigning zi to used cluster k. The Multinomial probability of p
(
xi | φ zi

)
is described in Eq. 3:

p
(
xi | φ zi

)
= exp

{
−nDKL

(
x̂i||φ zi

)
+T

}
(5)

where x̂i = [ xi1
n , ..., xid

n ] as a normalized histogram for xi and n = ∑
D
d=1 xid is the number of trial,

assumed to be the same for all data points. n will later go to infinity in our analysis.

Assigning zi to new cluster k.
p(zi = knew | xi,G) ∝p(zi = knew | z−i,α)× p(xi | zi = knew,G)

=α×
∫

φ

p(xi | φ)dG(φ)

=α× n!

∏
D
d=1 xid!

×
Γ
(
∑

D
d=1 γd

)
Γ
(
∑

D
d=1[γd + xid ]

) × D

∏
d=1

Γ(xid + γd)

Γ(γd)
. (6)

where we compute the term p(xi | zi = knew,G) =
∫

φ
p(xi | φ new)dG(φ) using Multinomial Dirich-

let conjugacy.

The geometric mean is expressed L̄ = log p(xi | zi = knew,G)
1
n (as in Sec. 3.1):

L̄ =
1
n

logn!+
1
n

{
logΓ

(
D

∑
d=1

γd

)
− logΓ

(
D

∑
d=1

[γd + xid ]

)
+

D

∑
d=1

log
xid + γd

xidγd

}
︸ ︷︷ ︸

logC(xi)

(7)

where we have defined that C (xi) is a function of xi such that logC (xi) = logΓ
(
∑

D
d=1 γd

)
−

logΓ
(
∑

D
d=1 [γd + xid ]

)
+∑

D
d=1 log xid+γd

xidγd
where γd is a Dirichlet symmetric (provided and fixed). We

note that C (xi) will result in a finite constant given xi.

Using Stirling approximation [4] logn! = n logn−n+O(logn) and canceling the common factors,
we obtain

L̄ = logn+
1
n

logC (xi)−1+
1
n

O(logn) . (8)

Substituting Eq. 8 back to 1
n log p(xi | zi = knew,G) = L̄, we obtain:

p(xi | zi = knew,G) =C (xi)× exp(−n+n logn)× exp [O(logn)] . (9)
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Table 1: Image clustering comparison on NUS WIDE dataset. Number of cluster in K-means ranges
from K = 5 to 30, then we report the mean and standard deviation. Time is recorded in second unit.

Approach AP [6] K-means GMM DPM [1] DPmeans [9] DPM-LSA
# Cluster K=18 K=5-30 K=5-30 K=17 K=17 K=19

NMI 0.166 0.19(.01) 0.19(.01) 0.188 0.161 0.174
Fscore 0.145 0.16(.01) 0.16(.01) 0.173 0.166 0.184
Time 167.8 14 15 1200 38 39.8

Then, the Eq. 6 becomes

p(zi = knew | xi,G) ∝ α×C (xi)× exp(−n+n logn)× exp [O(logn)] . (10)

In order to obtain non-trivial assignments, we must let α be a function of n (but independent from
the data) as α = exp(n−n logn−nλ ) for some λ . Then, we plug α with the new term into Eq. 10,
we get the following:

p(zi = knew | xi,G) =C (xi)× exp(−nλ )× exp [O(logn)] . (11)

Substituting Eq. 5 and Eq. 11 into the Eq. 4 for sampling zi, we obtain the following probabilities
to be used during Gibbs sampling.

γ̂ (zi = k) =
Nk exp

{
−nDKL (x̂i||πzi)+∑

D
d=1 O(logxid)

}
C (xi)exp(−nλ logK)+∑

K
u=1 Au exp [O(logn)]

1≤ k ≤ K (12)

γ̂ (zi = knew) =
C (xi)× exp(−nλ )

C (xi)exp(−nλ logK)+∑
K
u=1 Au exp [O(logn)]

(13)

where we denote Ak = Nk×exp
{
−nDKL (x̂i||φ k)+∑

D
d=1 O(logxid)

}
and C (xi) will result in a finite

constant given xi that logC (xi) = logΓ
(
∑

D
d=1 γd

)
− logΓ

(
∑

D
d=1 [γd + xid ]

)
+∑

D
d=1 log xid+γd

xidγd
.

All of the above probabilities will become binary when n→ ∞. More specifically, all of the k+ 1
values will be increasingly dominated by the smallest value of {DKL (x̂i||φ 1) , ...DKL (x̂i||φ K) ,λ}. In
other word, as n→ ∞, only the smallest of these value will receive a non-zero probability. The data
point xi will be assigned to the nearest cluster with a divergence at most λ . If the closest mean has
a divergence greater than λ , we will start a new cluster containing only xi.

Finally, we obtain the scalable inference in Dirichlet Process Mixture using Large Sample Asymp-
totic. When the number of samples (or trials) in Multinomial distribution goes to infinity, we obtain
the hard assignment as follows:

lim
n→∞

γ̂ (zi = k) =
{

DKL (x̂i||φ k) used k
λ new k.

We note that our hard assignment of LSA for DPM (when n→ ∞) is interestingly similar to the
SVA for DPM (when σ → 0)[8]. To select λ , we can use the farthest-first heuristic [9] (given the
expected number of cluster K) in a cross validation set.

4 Experiments

We present an evaluation of DPM using Large Sample Asymptotic (DPM-LSA) on image clustering
using NUS WIDE 13 animal dataset (obtained from http://www.ml-thu.net/~jun/data/). There are
13 categories of the animals with 3411 images. We use SIFT [13] as a feature. Each SIFT vector
(500 dimensions) is assumed to follow Multinomial distribution [14].

We compare our DPM-LSA (λ = 1.73) with Affinity Propagation (AP) [6], K-means, Gaussian
Mixture Model, Dirichlet Process Mixture [1] using collapsed Gibbs inference [12], and DPmeans
[9] (λ = 5960) on image clustering task using Matlab environment.
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