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Introduction

I Goal of the paper: We develop approximate inference technique for the Bayesian
spike-and-slab models for very high dimensional feature selection problems.

I Challenge: For very high dimensional problems, existing MCMC methods converge slowly;
and the variational Bayes (VB) and expectation propagation (EP) approaches, unless they
enforce structural constraints on the posterior, are impractical for large data.

I Solution: To address the computational issue, we develop the (FLAS) model. The features
of our approach include:
I FLAS is a hybrid of frequentist and Bayesian treatment, enjoying the benefits of both

worlds. It is computationally as efficient as the frequentist methods.
I It is free of any factorization assumptions on the joint posterior, but still enjoys a linear

cost O(np).

I Evaluation: Our new method FLAS performs feature selection better than or comparable
to the alternative approximate methods with less running time, and provides higher
prediction accuracy than various alternative sparse methods.

Model

The hierarchical Bayesian model for regression is:

p(t|X,w, τ ) =
∏n

i=1
N (ti |x>i w, τ−1) (1)

p(w|z) =
∏p

j=1
N (wj|0, r0)(1−zj)N (wj|0, r1)zj, (2)

p(zj = 1|sj) = sj (1 ≤ j ≤ p) (3)

where w are regression weights, τ is the precision parameter, and X = [x1, . . . , xn]>. zj
is a binary selection indicators for the j-th feature, and sj is a selection probability with
uninformative prior p(sj) = Beta(a0, b0), with a0 = b0 = 1. For classification,
p(t|X,w) =

∏n
i=1 σ(x>i w)ti [1− σ(x>i w)]1−ti where ti ∈ {0, 1}, w are classifier

weights, σ(a) = 1/(1 + exp(−a)), and t = [t1, . . . , tn]>.

MAP estimation for Laplace approximation

We use two scalable nonconvex optimization methods, L-BFGS and GIST . For
L-BFGS(FLAS), we marginalize out both z and s and do the following optimization:

min
w,s
F(w) = min

w
L(w)−

p∑
j=1

log
(1

2
N (wj |0, r1) +

1

2
N (wj |0, r0)

)
,

for GIST (FLAS*), we only marginalize out z and jointly optimize w and s:

min
w,s
F(w, s) = min

w
L(w) + min

s
R(w, s) (4)

where R(w, s) =
∑p

j=1 Rj(wj, sj) and

Rj(wj, sj) = − log
(
sjN (wj|0, r1) + (1− sj)N (wj|0, r0)

)
.

Marginal Posterior variance estimation using Ensemble Nystrom

The inverse of Hessian for regression is approximated using Nyström method as:

H−1 ≈ H̃−1, H̃ = τX>Xk(X>k Xk)†X>k X + diag(v). (5)

Xk = [fi1, . . . , fik], where fit is the it-th column of X, and vj = −d2 log(p(wj))

dw2
j

∣∣∣
wj=w̃j

for

LBFGS and vj = −d2 log(p(wj ,s̃j))

dw2
j

∣∣∣
wj=w̃j

for GIST. Applying Woodbury matrix identity we

can estimate the diagonal entries in O(nkp) time:

H̃−1 = diag(v)−1 − diag(v)−1X>Xk(τ−1X>k Xk + X>k Xdiag(v)−1X>Xk)−1X>k Xdiag(v)−1.

Since we can choose k � p, the inversion cost will still be linear in p. For
classification, H = X̃>X̃ + diag(v). Where X̃ = Xdiag(

√
b), and

bi = σ(x>i w̃)(1− σ(x>i w̃)). Rest of the procedure remains the same. To improve the
accuracy, a simple ensemble approach is proposed. We sample d disjoint sets of
columns of X, each set is of the same size k . The estimation of the j-th diagonal entry
of inverse Hessian is obtained by H−1(j , j) ≈ 1

d

∑d
r=1 H̃−1

r (j , j), where H̃−1
r is an

approximation for the set r ; time complexity is O(npkr), k, r << n, p.

Theoretical analysis for Ensemble Nystrom

Theorem 1. Define Ω = {A ∈ Rp×p|A � 0, λmin(A) ≥ c, λmax(A) <∞}. Assume
Hessian H and approximate Hessian H̃ both belong to Ω. Consider a function
f (A) = e>j A−1ej,A ∈ Ω. Then, ‖∇f (A)‖F ≤ L, (1− η)H + ηH̃ ∈ Ω ∀ η ∈ [0, 1],
and with high probability,

|H−1(j , j)− H̃−1(j , j)| ≤ L · D0

where c is a small positive constant, and L = p/c2. ej is a standard basis vector with 1
in j-th coordinate and 0’s elsewhere, and D0 is the standard Nyström error bound based
on Frobenius norm.
Theorem 2. Define Ω = {A ∈ Rp×p|A � 0, λmin(A) ≥ c, λmax(A) <∞}. Assume
Hessian H and a set of approximate Hessians {H̃1, . . . , H̃d} all belong to Ω, then with
high probability,

|H−1(j , j)− 1

d

d∑
r=1

H̃−1
r (j , j)| ≤ L · D1

where D1 the error bound for ensemble Nyström based on Frobenius norm. Because
D1 < D0, the ensemble approach has a smaller error bound.
Proposition 1. Assume that λmax(X>X) <∞, and ∀j b ≤ vj <∞, where b is a
small positive constant. Then both Hessian H and any approximate Hessian H̃ based
on Nyström method belong to Ω0 = {A ∈ Rp×p|A � 0, λmin(A) ≥ b, λmax(A) <∞},
and hence theorems 1 and 2 are satisfied with L = p/b2

Bayesian inference of sj, zj

Posterior moments calculated, in O(1) time, by Gauss-Hermite quadrature

E[sj ] =

∫
2N1(wj) +N0(wj)

3(N1(wj) +N0(wj))
q(wj)dwj , Var[sj ] =

∫
3N1(wj) +N0(wj)

6(N1(wj) +N0(wj))
q(wj)dwj − E2[sj ]

E[zj ] =

∫
N1(wj)

N1(wj) +N0(wj)
q(wj)dwj , Var[zj ] =

∫
N1(wj)

N1(wj) +N0(wj)
q(wj)dwj − E2[zj ].

where Ng(wj) = N (wj|0, rg) (for g = 0, 1) and q(wj) = N (wj|mj, σ
2
j ).

Experimental results on simulation and real data
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Figure: Simulation results, with p = 1000 and only 20 relevant features, for the prediction accuracy, the F1 score
of feature selection. Results for the root mean squared error for the posterior mean estimation of {sj} and {zj}
were obtained for p = 100, used Gibbs sampling as a gold standard. Results are averaged over 50 runs.

Table: The training time (seconds) on simulated data (p = 1000).
(a) Regression

method 60 80 100 120
capped L1 0.0054 0.0705 0.0103 0.0108

lasso 0.0312 0.0313 0.0321 0.0329
elastic net 0.0360 0.0346 0.0352 0.0349

ARD 0.03 0.17 0.20 0.67
VB 2.4161 2.3999 2.4794 2.4404
VB* 2.7544 3.0118 2.6012 2.7795
EP 0.9345 1.0478 1.1160 1.1468
EP* 0.505 0.681 1.047 1.936
MM 2.5230 1.1047 0.4314 0.5282

FLAS* 0.0664 0.0642 0.0704 0.0855
FLAS 0.0140 0.0154 0.0216 1.4526

(b) Classification
method 60 80 100 120

capped L1 0.0180 0.0499 0.0427 0.0559
lasso 0.1033 0.1289 0.1555 0.1821

elastic net 0.08690 0.1009 0.1163 0.1356
ARD 0.06 0.07 0.15 0.45
VB 10.3312 11.2570 12.3317 13.3366
VB* 0.0812 0.1570 2.8915 3.0194
EP 1.1165 1.1695 1.2400 1.3090
EP-L 0.0132 0.0581 0.0598 0.1631
FLAS* 0.0344 0.0736 0.0794 0.1929
FLAS 0.0097 0.0111 0.0139 0.0152

Table: Root mean square error on regression datasets (the first 6 rows) and classification error rates (%) on large
binary classification datasets (the last 8 rows). Note that EP-L is designed for classification task only and thus
does not have results on the regression datasets. The results are averaged over 10 runs.

dataset lasso elast net capped L1 ARD EP-L FLAS* FLAS
gse5680 0.107 ± 0.0030.107 ± 0.003 0.107± 0.003 0.136 ± 0.005 NA 0.122 ± 0.002 0.089± 0.002

10k corpus 0.382 ± 0.0020.382 ± 0.002 0.382 ± 0.002 0.382 ± 0.384 NA 0.383 ± 0.003 0.372 ± 0.003
tied 0.656 ± 0.0130.627 ± 0.014 0.656 ± 0.013 0.532 ± 0.017 NA 0.719 ± 0.012 0.656 ± 0.013
House 1.576 ± 0.0111.578 ± 0.017 1.587 ± 0.012 0.435 ±0.0006 NA 0.561 ± 0.015 0.425 ±0.002
Year 0.296 ± 0.0090.293 ± 0.007 0.307 ± 0.004 0.306 ± 0.006 NA 0.248 ± 0.00050.234 ± 0.0001
dlbcl 1.76 ± 0.026 1.75 ± 0.027 1.75 ± 0.028 2.38 ± 0.063 NA 1.60 ± 0.047 1.60± 0.047
classic 6.69 ± 0.002 5.94 ± 0.002 4.14 ± 0.002 18.2 ± 0.002 8.94 ± 0.002 5.76 ± 0.002 4.20 ± 0.001
hitech 23.2 ± 0.005 21.4 ± 0.004 21.3 ± 0.003 28.5 ± 0.019 25.2 ± 0.001 19.4 ± 0.003 19.9 ± 0.003
k1b 5.44 ± 0.005 4.91 ± 0.004 4.42 ± 0.004 23.0 ± 0.013 7.94 ± 0.004 5.03 ± 0.005 4.74 ± 0.005

reviews 7.68 ± 0.003 6.47 ± 0.002 6.09 ± 0.001 35.4 ± 0.05 8.28 ± 0.002 5.93 ± 0.002 5.54 ± 0.001
sports 3.72 ± 0.001 3.15 ± 0.0008 3.25 ± 0.0009 24.1 ± 0.032 10.9 ± 0.008 2.78 ±0.001 2.77 ± 0.007
ng3sim 19.3 ± 0.005 16.2 ± 0.003 15.4 ± 0.003 21.3 ± 0.006 14.5 ± 0.002 13.7 ± 0.003 13.6 ± 0.002
ohscal 13.8 ± 0.001 13.7 ± 0.001 13.8 ± 0.001 37.3 ± 0.02 13.7 ±0.002 11.9 ± 0.001 13.1 ± 0.001
la12 13.6 ± 0.002 12.5 ± 0.002 12.2 ± 0.002 30.1 ± 0.025 13.2 ± 0.002 11.1 ± 0.002 11.1 ± 0.001
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