Fast Laplace Approximation for Sparse Bayesian
Spike and Slab Models

Syed Abbas Zilqurnain Naqvi Shandian Zhe Yuan Qi
Purdue University Purdue University Purdue University
nagvi@purdue.edu szhe@purdue.edu alangi@cs.purdue.edu
Jieping Ye

University of Michigan, Ann Arbor
Jjpye@umich.edu

Abstract

We propose a simple yet effective fast approximate inference algorithm
based on Laplace’s method for Bayesian spike-and-slab models. Unlike
previous variational Bayes (VB) and expectation propagation (EP) ap-
proximations that fit a factorized distribution to the exact joint posterior,
our method computes approximate posterior marginals without taking
any factorization assumption, and enjoys a linear computational cost
in the number of features. Moreover, our method provides numerical
estimation of selection probabilities and indicator variables to quantify
selection uncertainty for each individual feature. The simulation and
real-world data verify the inference quality, computational efficiency
and predictive performance of the proposed algorithm.

1 Introduction

We consider the Bayesian spike-and-slab models for very high dimensional feature selection prob-
lems. For very high dimensional problems, existing Monte Carlo methods [9] converge slowly with
tens of thousands of features in data; and the variational Bayes (VB) and expectation propagation
(EP) approaches [3, 4, 5] either need a fully factorized approximation to obtain a linear cost but
at the price of a reduced approximation quality, or have a quadratic cost, making them impractical
for large data. By contrast, the frequentist L;-type methods have fast solvers developed over years,
making them a practical tool. To address the computational issue associated with the spike-and-slab
model, we develop the Fast Laplace Approximation for Spike-and-slab (FLAS) model. FLAS not
only maintains the benefits of the Bayesian treatment (e.g., uncertainty quantification) but also is
computationally as efficient as the frequentist methods.

Specifically, we apply the Laplace approximation to the marginal posterior distribution of each
weight parameter. We exploit two efficient optimization methods, GIST [2] and L-BFGS [10],
to obtain the mode of the posterior distribution. Then we use ensemble Nystrom to calculate the
diagonal of the inverse Hessian over the mode to obtain the approximate posterior marginals. The
theoretical analysis of the error bound is also provided. With the posterior marginals of model
weights, we use quadrature integration to estimate the marginal posteriors of selection probabilities
and indicator variables for all features, which quantify the selection uncertainty. While a factorized
joint posterior assumption is usually not true, VB and EP often adopt it for computational efficiency.
By contrast, our method is free of this assumption but still enjoys a linear cost O(np), where n and
p are the numbers of samples and features, respectively.



On simulated data, the new method FLAS performs feature selection better than or comparable to
the alternative approximate methods with less running time, and provides higher prediction accuracy
than various sparse methods including VB, EP, automatic relevance determination (ARD), lasso,
elastic net and a capped-L; method. On large real benchmark datasets, our method often achieves
improved prediction accuracy with a comparable speed than the alternative scalable sparse methods,
such as ARD and capped-L;.

2 Spike-and-Slab Models

We first present sparse linear models with spike-and-slab priors. Suppose we have n independent

and identically distributed samples D = {(x1,t1),-.., (Xn,ts)}, where x; is the p dimensional
feature vector of the i-th sample, and ¢; is its response. We aim at predicting the response vector
t = [ti,...,t,]" based on the feature set X = [xj,...,X,]" and selecting a small number of

features relevant to the prediction. For real-world applications, we often have n < p.

For regression, the Gaussian data likelihood is used: p(t|X,w, ) = [\, N (ti|x/ w,7~1) where
w are regression weights, and 7 is the precision parameter; for classification, the logistic likelihood
isused: p(t|X, w) = [[/_, o(x/ w)'i[l—o(x; w)]' 7' where t; € {0, 1}, w are classifier weights,
and o(a) = 1/(1 + exp(—a)).

A set of latent binary variables {z;} are introduced to indicate the feature selection: z; = 1 means
the j-th feature is selected; otherwise, it is not. Then a spike-and-slab prior [9] over w is assigned:

p(wlz) =TT _ N wyl0.70) =N (0,71, (1)

p(zj =1ls;) =s; (1<j<p) 2)
where ¢ and r; are the variances of the two Gaussian components and s; € [0, 1] represents the
selection probability for the j-feature. We set r; >> rg so that if the j-th feature is selected, the prior
over w; has a large variance r; (as a regular Lo penalty in the frequentist framework) and, if not,
the zero-mean prior has a very small variance r(, leading to aggressive shrinkage of the irrelevant
feature. We further assign a uninformative Beta prior over s;: p(s;) = Beta(1, 1).

3 Algorithm

3.1 Optimization of the Model

To obtain the Laplace approximation, we need to compute the mode and the second-order derivative
of the log posterior distribution at the mode. Due to the nonconvexity of the spike-and-slab model,
we use two scalable nonconvex optimization methods, L-BFGS [10] and GIST [2]. For L-BFGS,
we marginalize out both z and s and optimize w; for GIST, we only marginalize out z and jointly
optimize w and s. Both methods are efficient and have computational costs linear in p. The details
are given in the appendix.

3.2 Laplace Approximation for Marginal Posterior of Weights

Standard Laplace approximation requires to invert the Hessian matrix of the negative log probability
at the mode, via which we can obtain a joint approximate posterior: p(w|X,t). For prediction
and feature selection, however, we only need marginal posterior of each weight w;, which only
requires the diagonal entry of the inverse Hessian. Nevertheless, we still have to invert the Hessian
matrix, which has time complexity of O(p®) and is unacceptable for large problems. To resolve
this issue, we resort to Nystrom method. Specifically, let us denote the mode of the model weights
by W and consider the Hessian matrix in regression case first, H = 7X X + diag(v) where

_ d?log(p(w;))

v = 2
J dw}

. where p(w;) is the prior probability after marginalizing z; and s;. For
u)]‘ :w]‘
GIST, we take the second derivative of p(wj, §;) to approximate v;. Then the Nystrém approach is
used to approximate X " X: A subset of columns of X are sampled to form a low-rank n x k matrix
X = [£i,,- .-, ], where f;, is the i;-th column of X; and X ' X ~ X T X}, (X X)X, X where
(-)T is the generalized inverse operation. The inverse of Hessian is then approximated by

H'~H!, H=7X"X,(X!X;)IX]X + diag(v). 3)



Applying Woodbury matrix identity [14], we can readily reduce the complexity to O(nkp):
H™! = diag(v) ™! —diag(v) !XT X, (771X X, + X Xdiag(v) ' X T X,,) 1 X[ Xdiag(v) .

Since we can~choose k < p, the inversion cost will still be linear in p. We can then read off the
diagonal of H™! to calculate the marginal posterior approximation of each w;: a Gaussian with
mean m; being the posterior mode w; and variance 0]2- equal to H~1(j, 7).

For classification, the Hessian matrix has a slight different form: H = XX + diag(v) where
X = Xdiag(vb), and b; = o(x; W)(1 — o(x; W)). Then we follow the same way as in regression
case to calculate the Laplace approximation for each w;.

Using Nystrom approach to estimate the diagonal of inverse Hession will inevitably bring some ap-
proximation error. To improve the accuracy, a simple ensemble approach is proposed. Specifically,
we first sample d disjoint sets of columns of X, each set is of the same size k. For each set r, we
can calculate an approximate inverse Hessian H,-1. The estimation of the j-th diagonal entry of
inverse Hession is then obtained by H™'(j, j) ~ 3 Zle H, 1(j,7). Using Taylor expansion and
error bounds of Nystrom approximations[7], we can prove that the proposed ensemble approach can
have a smaller estimation error. This is expressed in the following theorems (the proof details are
given in the appendix).

Theorem 1. Define @ = {A € RP*P|A = 0, \pin(A) > ¢, Apaz(A) < 00}, Assume Hessian
H and approximate Hessian H both belong to 2. Consider a function f(A) = ejTA_lej, A € Q.
Then, |[Vf(A)||r < L, (1 —n)H+7H € QV 5 € [0, 1], and with high probability,

H™'(5,5) —~H'(j.J)| < L Do
where ¢ is a small positive constant, and L = p/c?. e; is a standard basis vector with 1 in j-th
coordinate and 0’s elsewhere, and D is the standard Nystrom error bound based on Frobenius norm

[7].

Theorem 2. Define Q = {A € RP*P|A > 0, \yin(A) > ¢, Apnaa(A) < 00}. Assume Hessian H
and a set of approximate Hessians {Hj, ..., H;} all belong to €2, then with high probability,

d
IR T
H 1(373)—g§ H-'(j,))| <L D
r=1

where D; the error bound for ensemble Nystrom based on Frobenius norm. Because Dy < Dy (see
[7]), the ensemble approach for diagonal entry estimation of H~! has a smaller error bound.

3.3 Estimation of Selection Probabilities

Given the Laplace approximation, we can estimate the probability s; for selecting the j-th feature,
without assuming these probabilities are factorized over the features. In contrast, both VB and
EP approximations use the factorized approximation over the probabilities of the binary selection
indicators z.

We first invert the conditional relationship between s; and w; based on Bayes rule, p(s;|w;) =
53N (w;]0,71)+(1—s;)N (w;0,r0)
TN (w;]0,r1)+ 2N (w;]0,r0)

J p(sjlw; )N (wj|my, 0%)dw; where N (wj|m;,0%) is the estimated posterior marginal of w;.

Then, the posterior mean and variance of s; are calculated by
E[Sﬂ:/ Nl(wj)+N0(w]) Q('lUj)d’LUj, Var[sj]z/ Nl(w])+NU(wJ)
3(N1(w;) + No(wy)) 6(N1(w;) + No(wy))

where Ny (w;) (for g = 0,1) and g(w;) are the shorthand for A(w;|0,74) and N (w;|m;, o%) re-
spectively. A similar procedure can be used to calculate the posterior moments of z;—the selection
indicator of j-th feature.  The integrations to calculate the means and variances of s; and z; do
not have a closed-form solution. So we apply Gauss-Hermite quadrature method [8] to obtain an
estimation. Since the integration is one dimensional and smooth, the quadrature method is com-
putationally efficient and accurate: With only 5 quadrature nodes (or function evaluations), we can
estimate E(s;), E(z;), Var(s;), and Var(z;) with high accuracy (e.g., the numerical difference from
the true integration is often on the order of 10~%). It is easy to see that both time and space com-
plexity of our algorithm are O(np), including estimating the posterior mean and variance of w, s,
and z. The linear cost makes our algorithm scalable for large data.

. Then the marginal posterior of s; can be computed by p(s;|t, X) =

q(w;)dw; — E?



4 Experiments
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Figure 1: Simulation results, including the prediction accuracy, the F1 score of feature selection, and the root
mean squared error for the posterior mean estimation of {s;} and {z;}. Results are averaged over 50 runs.
Table 1: The training time (seconds) on simulated data (p = 1000).

(a) Regression (b) Classification

method 60 30 100 120 method 60 30 100 120
capped L1 0.0054 0.0705  0.0103  0.0108 capped L1 0.0180 0.0499 0.0427 0.0559
lasso 0.0312  0.0313  0.0321  0.0329 lasso 0.1033 0.1289 0.1555 0.1821
elastic net 0.0360  0.0346  0.0352  0.0349 elastic net 0.08690 0.1009 0.1163 0.1356

ARD 0.03 0.17 0.20 0.67 ARD 0.06 0.07 0.15 0.45
VB 2.4161 23999 24794  2.4404 VB 103312 11.2570  12.3317 13.3366
VB* 27544  3.0118 2.6012  2.7795 VB* 0.0812 0.1570 2.8915 3.0194
EP 0.9345  1.0478  1.1160  1.1468 EP 1.1165 1.1695 1.2400 1.3090
EP* 0.505 0.681 1.047 1.936 EP-L 0.0132 0.0581 0.0598 0.1631
MM 2.5230  1.1047  0.4314  0.5282 FLAS* 0.0344 0.0736 0.0794 0.1929
FLAS* 0.0664  0.0642  0.0704  0.0855 FLAS 0.0097 0.0111 0.0139 0.0152

FLAS 0.0140  0.0154  0.0216 1.4526

We compared our approach with alternative approximate inference algorithms for the spike-and-
slab model, including EP, VB and MM [15]. We used three versions of EP algorithms, where
one is based on continuous spikes [S](EP), another is based on delta spikes (EP*), and the third
one [4] uses fully factorized posterior assumption for model weights to obtain a linear cost O(np)
in classification context (EP-L). For VB, we used two versions: [16](VB) having cubic cost O(p?)
but without a factorized posterior assumption over model weights, and [13](VB*) using a fully
factorized posterior assumption with reduced cost O(np?). We also tested other popular sparse
learning methods, including ARD, lasso, elastic net, and capped L;. Our algorithms based on L-
BFGS and GIST are denoted by FLAS and FLAS* respectively. The solution of Lo regularization
was used as initialization. We set k = 5, d = 5 for ensemble Nystrom.

We first examined our algorithm in a simulation study. The study aimed to evaluate our algorithm in
four aspects: (i) the predictive performance when p >> n, (ii) the capability to select relevant features
and (iii) the accuracy of the estimated posterior of the selection probabilities, (iii) the running time.
To do so, we simulated data where p = 1000 and only 20 features are relevant to the responses. The
relevant features were generated from a multi-variate Gaussian distribution with a block diagonal
covariance matrix. We fixed the number of test samples to 200 and vary the number of training
samples n from {60, 80, 100, 120}. For each n, we randomly generated 50 datasets and reported the
average results. To evaluate the accuracy of posterior inference, we ran a similar simulation with
p = 100, because the ground truth was generated by Gibbs sampling, which converges slowly for
high dimensional problems. The details are given in the appendix.

As we can see from Figure 1 and Table 1, in most cases our algorithm exhibits better performance
than competing methods not only in prediction accuracy, but also in feature selection and uncertainty
quantification. Furthermore, our algorithm converges faster than EP and VB and and is comparable
to ARD and L; type methods in terms of running speed.

Finally, on real-world large benchmark data, our algorithm often obtained higher prediction accu-
racy, with running time comparable to the efficient sparse methods, such as capped L; and ARD.
The results are provided in the appendix.
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5 Appendix

5.1 Optimization of the Model

To obtain the Laplace approximation, we need to compute the mode and the second-order derivative
of the log posterior distribution at the mode. Due to the nonconvexity of the spike-and-slab model,
we use two scalable nonconvex optimization methods as described in the following paragraphs.

5.1.1 L-BFGS Optimization of the Marginalized Model

For the first approach, denoted by FLAS, we marginalize out both z and s, and the negative log
probability of the marginalized model is

Flw) = Lw) = Y log (N (wsl0, ) + 3N (w;10,70)).

where L(w) is the negative log likelihood for regression or classification. To minimize the negative
log probability, we choose to use the L-BFGS method [10] because of its low computational and
memory cost. As a quasi-Newton method, the L-BFGS method uses last M function/gradient pairs
to approximate the inverse Hessian matrix of the parameters w. Because M is set to be much smaller
than p, often as small as 3-10, the computational cost is linear in p.

To use L-BFGS, we need to compute the gradient over w:
g _ dL(w) ro + rig(w;)
dw;  dw, ror1(1+ g(w;))
where g(w;) = \/gexp(%(i — Lyyw?), LW — -XT(Xw — t) for linear regression, and

J

1 0 7 dw
dL(w) _ N tn _ 1-t, fotd :
“Two = Xm=1 (1+exp(x;w) 1+exp(—x;w))w for logistic regression.

Using the gradient in the L-BFGS method, we can compute the mode of wy; efficiently. Then we can
approximate the posteriors of w;, s; and z;, as explained in Section 3.2.

5.1.2 GIST Optimization of the Joint Model

For the second approach, denoted by FLAS*, we only marginalize out z (without marginalizing
z, the optimization requires discrete optimization strategies which are prohibitively expensive) and
jointly optimize over both the weights w and the selection probability s. From a Bayesian perspec-
tive, we prefer the first approach in the above because, by marginalizing out s, it essentially takes all
possible values of s into account. But the second approach can provide a more pronounced selective
shrinkage effect than the first approach. The reason is that while the marginalized model always has
a mixture of two penalizers, the joint model explicitly switches its regularization level—using either
the spike component or the slab component—based on the optimal value of s.

For the joint optimization, we use GIST, a recently developed nonconvex optimization method [2],
which converges to a local optimum with a cost linear in p. Specifically, we minimize the negative
log joint probability
min F(w,s) = min L(w) + msin R(w,s)
w

w,s
p
where R(w,s) = > R;(wj,s;), and
j=1
Rj(wj, s;) = —log (1 — ;)N (w;]0,70) + s;N (w;]0,71))
which is obtained by marginalizing out z; in the model.

GIST iteratively optimizes w and s using the following two steps:
w1 = argmin L(w™®) + (VL(w®),w — w®)

k
+ %HW —w®||? + min R(w,s),
S
A1) — argmin R(wF D) s)

s



where w(*) is the value of w at step k, and p(¥) is the stepsize at step k.

Due to the form of R(w,s), the original minimization problem can be cast into p independent
univariate proximal operator problems:

1 1
Sk—&-l) =argmin —(w; — gk)) T m mlnR i(w;, 85),
wj P
sg-kﬂ) = argmin Rj(w](-kﬂ), s5)
8j
where j = 1,...,p, and Wk = " VL( ) /p™) . To solve the univariate optimization
problem, we calculate the value of w; for the followmg two cases. For the first case s; = 1, the
function has its minimal at w; = by if [by] > @ and w; = sign(b;)a otherwise, where b1 =
% and a = \/ (7?1“’%1%) log , / :—(1); for the second case s; = 0, the function has its minimal

w®)
1+1/(rop™) "
the minimal values for these two cases and taking the smaller one, we can easily obtain the new

w1 and s;kﬂ)

at w; = by if |bo| < a and w; = sign(bo)a if otherwise, where by = Then comparing

. Note that, when w = a, s; can be either 1 or 0, which gives the same function
values.

5.2 Proof for approximation errors of inverse Hessian diagonal estimation

Theorem 1. Define 2 = {A~€ RP*P|A > 0, A\pin(A) > ¢, Az (A) < 0o}, Assume Hessian
H and approximate Hessian H both belong to 2. Consider a function f(A) = e;rAflej, A e
Then, (A)||r <L, (1 —n)H+7H € QV 7 € [0, 1], and with high probability,

H™'(5.5) —~H'(j.4)| < L- Do
where c is a small positive constant, and L = p/c?. e; is a standard basis vector with 1 in j-th
coordinate and 0’s elsewhere, and Dy is the standard Nystrom error bound based on Frobenius norm

[7].
Proof. The derivative of f(A ) can be calculated by
Vf(A)=—-A""eje] A"

Now since A = 0 and consequently A~ = 0, ||A|lp = /> i_ A2 and |[A7Y|p = />0, )\2

Since Appaz(A) < 00 and Az (A™Y) < oo, [[AllF < oo and HA Yz < oo which implies
IVF(A)llr < oo. Now [[VF(A)|r < AT =320 57 < p(1/A2,,(A) <p/c2 =L

Since f(A) = ejTAflej for A € Q, we can write H™!(j,j) = f(H). Now, let us consider
[H'(j,5) —H(j,5)| = |f(H) — f(H)|. We define A = H — H. Then f(H) = f(H + A).
Now for any 0 < 7 < 1, we have (H + 7A) = ((1 — )H + nH) > 0, and since, based on Weyl’s
inequality, Aoz (1 — 7)H 4 7H) < (1 — 1) Amaz(H) + A mae (H) < 00, and A (1 —7)H +
nH) > (1 = 9)Anin(H) + 7Amae(H) > (1 = n)c+nc = ¢, H+ nA € Q. This implies that
IVf(H+nA)||r < Lforany 0 <5 < 1. Since M =tr(VF(H+nA)T - A),itis defined
and bounded for all n € [0, 1], hence it is continuous w1th respect to 7. Therefore, by mean value
theorem, there exist a number ¢ € [0, 1] such that:

JH+A)=fH) +x(Vf(H+tA)" - A). @)
Thus by cauchy schwarz inequality,
[F(H+A) - f(H)| < |[VAHEH+A) |- [Allr < L-|A]s. 5)

Note that || A||r is the Nystrém approximation error for X " X and therefore we can readily apply
the standard Nystrom error bound Dy. The detailed form of Dy can be found in [7] (Theorem 2).

Theorem 2. Define ) = {A € RP*P|A > 0, \pin(A) > ¢, Aoz (A) < 0o}, Assume Hessian H
and a set of approximate Hessians {Hj, .. Hd} all belong to €2, then with high probability,

H'(j,5) — d;H (j.4)| < L-Dy

where D1 the error bound for ensemble Nystrom based on Frobenius norm.



Proof. First, we have

HGg) — 5 SOE G =] 3 () - (L))

1 -
< Z |f(H) — f(H,)|. (6)

Following (5), we have

d
1 . 1
1/ - —1y/ -
H™(j,5) — gZT:Hr Gl <L &Z_: A F )
where A, = H, — H. From the proof of Theorem 3 in [7], we can see that the error bound for

ensemble Nystrom is obtained by calculating the bound for % Zle IA.||F (note that the error for

ensemble Nystrom is upper bounded by é Zle |A,||#). Therefore, we can directly apply the
resulting error bound D; (the detailed form can be found in Theorem 3 [7]) to obtain

Lo ZH (4. 4)] < L~ Dr.

Proposition 1. Assume that A4, (X" X) < 00, and Vj b < v; < oo, where b is a small positive
constant. Then both Hessian H and any approximate Hessian H based on Nystrom method belong
to Qo = {A € RP*P|A > 0, \pin(A) > b, \pax(A) < oo}, and hence theorems 1 and 2 are
satisfied with L = p/b?

Proof. Since 7X " X = 0 and diag(v) = 0, H = 7X T X+diag(v) = 0. Now by Wey!’s inequality,
Amaz (TX T X+diag(v)) < Mnaz (TX T X))+ A ez (diag(v)) < oo, and Ayin (71X T X+diag(v)) >
Amin (TXTX) + Apin (diag(v)) > b, Appin (X 7X) > 0. Therefore, H € €.

Using theorem 3.5 in [1] we can conclude that 7X " X,(X,] X)X X > 0, therefore H > 0.
Based on theorem 3.8 in [1] Apas (7X T X3 (X] X5) X[ X) < A (7XTX) < 00, and
Amin (T XTXk(XTXk) XTX) > 0. Therefore, combined with Weyl’s inequality, A4z (H) < 00,
and /\mm(H) > b. Therefore, H € €.

5.3 Simulation Details

Data Generation for 1000 dimensions. For simulation, we first set the feature dimension p to
1000. We assumed 20 out of the 1000 features are relevant to the response. The irrelevant features
were generated independently from the standard Gaussian distribution. The relevant features were
generated from a multi-variate Gaussian distribution with a block diagonal covariance matrix. The
covariance matrix consisted of two 10 by 10 sub-covariance matrices on the main diagonal. In each
sub-covariance matrix, the diagonal elements were set to 1 and the off-diagonal elements were set
to 0.81. Therefore, the 20 features were generated from two different groups. The weights w were
set as

W = [07...,07v,v/\/ﬁ, —v,—v/\/ﬁ]
——

980

where v = [5,5,5,5,5]. Given the sampled X, for regression the response vector t were generated
by t = Xw + €, where each ¢; was sampled independently from the standard Gaussian. For
classification, we generated each response by t; = —1 - §(x/ w < 0) + 1-d(x;/ w > 0), where
d(z) = 1if z = 1 and 0 otherwise.

Data Generation for 100 dimensions. We chose a relatively small number of features in this
simulation because we need to evaluate the accuracy of posterior inference results via comparing
with Gibbs sampling, which converges slowly for very high dimensional problems. We made 20 out
of the 100 features relevant to the response. The irrelevant features were generated independently
from the standard Gaussian distribution. The relevant features were generated from a multi-variate
Gaussian distribution with a block diagonal covariance matrix. The covariance matrix consisted of
two 10 by 10 sub-covariance matrices on the main diagonal. In each sub-covariance matrix, the
diagonal elements were set to 1 and the off-diagonal elements were set to 0.81. Therefore, the 20



features were generated from two different groups. The weights w were set as
w=1[0,...,0,54v,....54+v,-54+wv,...,—5+ 9]
N——
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where v was generated from Uniform[—1,1]. Given the sampled X, the response vector t was
generated by t = Xw + ¢, where € was sampled from the standard Gaussian for regression. For
classification, we generated each response by t; = —1-6(x/ w < 0) +1-4d(x/ w > 0), where
d(z) = 1if z = 1 and 0 otherwise. We fixed the number of test samples to be 2000 and varied the
number of training samples n from {10, 30, 50, 70}. For each n, we randomly generated 50 datasets
and reported the average results.

5.4 Large Real Benchmark Data

We examined all the algorithms on 14 published large real datasets, including 8 classification
datasets' and 6 regression datasets: Diffuse large B cell lymphoma (DLBCL) [11], GSE5680 [12],
Yearpredictionz(Year), House-census’(House), 10K corpus [6] and TIED*. Among the 14 datasets,
the feature numbers are often at tens of thousands, while the sample sizes are often at hundreds or
thousands. The information about these datasets is provided in Table 2.

We compared our algorithms, FLAS* and FLAS, with lasso, elastic net, capped L1, ARD and EP-L.
For the intractable EP and VB methods—the ones with computational cost O(p?) or O(np?), we
first reduced the dimensionality of the datasets, by running FLAS and pruning all features with pos-
terior mean selection probability less than 0.5, and then performed the comparison. We randomly
split each dataset into two parts—10% samples for training and the rest for test—for 10 times and
ran all the methods on each partition. In each run, we used 10-fold cross validation on the training
data to tune the free parameters. Table 3 lists the average prediction accuracy and standard errors on
the original datasets. As we can see, in all datasets, except for Tied in regression, and classic and
kIb in classification, our algorithms, FLAS* or FLAS, obtain smaller root mean square errors or
classification error rates. We also examined the average training time of all the methods and it turns
out that our approach spent less or comparable time than the others. For example, the running time
in seconds on gse5680 and reviews are {lass0:2.03, elastic net:2.26, capped L1:15.3, ARD:3.52,
EP-L: 2.53, FLAS*:2.1, FLAS:0.3}, and {lass0:0.32, elastic net:0.29, capped L;:2.3, ARD:26.7,
EP-L:10.2, FLAS*:1.37, FLAS:0.10} respectively. Table 4 shows the prediction accuracy on the
datasets with reduced dimensionality; that is for the comparison with intractable EP and VB algo-
rithms. It turns out that our methods performed better or comparable than the intractable EP and
VB; however, our methods have the scalability advantage in high dimensional problems.

Table 2: The size of the real large benchmark data.

(a) Regression

datasets GSE5680 10k corpus ~ House-census  tied ~ Yearprediction  dlbcl
N 120 3308 22784 750 463715 240
p 31041 150358 138 999 90 752

(b) Classification

datasets classic hitech klb reviews sports ng3sim  ohscal lal2
N 7094 2301 2340 4069 8580 2998 11162 6279
p 41681 10080 21819 18483 14870 15810 11465 31472

! www.shi-zhong.com/software/docdata.zip > archive.ics.uci.edu/ml/datasets.html
3 www.cs.toronto.edu/~delve/data/census-house/desc.html
4 www.causality.inf.ethz.ch/repository.php



Table 3: Root mean square error on regression datasets (the first 6 rows) and classification error rates (%) on
large binary classification datasets (the last 8 rows). The results are averaged over 10 runs. Note that EP-L is
designed for classification task only and thus does not have results on the regression datasets.

dataset lasso elast net capped L ARD EP-L FLAS* FLAS
gse5680 | 0.107 4 0.003 0.107 &£ 0.003 0.107+£ 0.003  0.136 £ 0.005 NA 0.122 £ 0.002  0.089+ 0.002
10k corpus | 0.382 &+ 0.002 0.382 £ 0.002 0.382 4= 0.002 0.382 £ 0.384 NA 0.383 +0.003  0.372 + 0.003
tied 0.656 £ 0.013 0.627 + 0.014 0.656 £ 0.013  0.532 + 0.017 NA 0.719 £ 0.012  0.656 + 0.013
House 1.576 £ 0.011 1.578 £0.017 1.587 £0.012 0.435 £0.0006 NA 0.561 £0.015  0.425 £0.002
Year 0.296 £ 0.009 0.293 £ 0.007 0.307 &£ 0.004 0.306 £ 0.006 NA 0.248 £ 0.0005 0.234 £ 0.0001
dlbcl 1.76 £0.026  1.75+0.027 1.75£0.028 2.38 + 0.063 NA 1.60 £ 0.047 1.60+ 0.047

classic 6.69 +0.002 594 +£0.002 4.14£0.002 182+ 0.002 8.94+£0.002 5.76 £ 0.002 4.20 4 0.001
hitech 232 40.005 21.4+0.004 21.3+£0.003 285+0.019 252+0.001 19.4+0.003 19.9 4+ 0.003

klb 5.4440.005 491+0.004 4.4240.004 23.0+0.013 7.94+0.004 5.03+0.005 4.74 £+ 0.005
reviews 7.68 £ 0.003  6.47 £ 0.002  6.09 £ 0.001 3544005 82840.002 593+ 0.002 5.54 £ 0.001
sports 3.72£0.001 3.15£0.0008 3.25 4 0.0009 24.1 £0.032 10.9 +0.008 2.78 £0.001 2.77 £+ 0.007
ng3sim 193 +£0.005 162+ 0.003 154 £0.003 21.3+0.006 14.5+0.002 13.7 =+ 0.003 13.6 £ 0.002
ohscal 13.8 £0.001 13.7+£0.001 13.8 £ 0.001 373 £0.02 13.7£0.002 11.9 £ 0.001 13.1 +0.001

lal2 13.6 £0.002 12.5+0.002 12.2+0.002 30.1 +0.025 13.2+0.002 11.1 & 0.002 11.1 £ 0.001

Table 4: Root mean square error on regression datasets (the first 3 rows) and classification error rates (%) on
binary classification datasets (the last 4 rows) after dimension reduction. The results are averaged over 10 runs.
FLAS is applied to reduce the data dimensions before the test.

dataset EP VB FLAS* FLAS
gse5680 0.191 £ 0.008 0.238 £ 0.009 0.19540.008 0.19740.008
10k corpus 0.382 £ 0.002 0.382 £ 0.002 0.381 £ 0.002 0.381+ 0.002

tied 0.5787+ 0.013  0.7983 £ 0.011 0.5868 = 0.013  0.587740.013
hitech 2431 £ 0.046 22.48 £ 0.006 19.64 £ 0.004 19.38 £ 0.004
klb 9.37 £ 0.003 9.34 £ 0.002 5.4 + 0.006 5.91 £ 0.006
reviews 10.2 4 0.0004 10.1 & 0.004 6.39 £ 0.002 6.16 + 0.002
ng3sim 21.3 £+ 0.006 24.37 4 0.007 14.2 £ 0.004 14.65 £ 0.005
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