
Improving Semi-Supervised Learning with Auxiliary
Deep Generative Models

Lars Maaløe1
larsma@dtu.dk

Casper Kaae Sønderby2
casper.sonderby@bio.ku.dk

Søren Kaae Sønderby2
soren.sonderby@bio.ku.dk

Ole Winther1,2
olwi@dtu.dk

1Department of Applied Mathematics and Computer Science, Technical University of Denmark
2Bioinformatics Centre, Department of Biology, University of Copenhagen

Abstract
Deep generative models based upon continuous variational distributions param-
eterized by deep networks give state-of-the-art performance. In this paper we
propose a framework for extending the latent representation with extra auxil-
iary variables in order to make the variational distribution more expressive for
semi-supervised learning. By utilizing the stochasticity of the auxiliary variable
we demonstrate how to train discriminative classifiers resulting in state-of-the-art
performance within semi-supervised learning exemplified by an 0.96% error on
MNIST using 100 labeled data points. Furthermore we observe empirically that
using auxiliary variables increases convergence speed suggesting that less expres-
sive variational distributions, not only lead to looser bounds but also slower model
training.

1 Introduction
Deep neural networks have recently showed impressive performance on a wide range of tasks. These
improvements have been achieved by better algorithms, faster computers and increased availability
of large labeled datasets in many areas, e.g. image recognition (Deng et al., 2009). In many practical
situations it is relatively inexpensive to acquire data but expensive to label it. This makes semi-
supervised learning attractive. There exist many approaches to performing semi-supervised learning,
e.g. transductive SVM (TSVM) (Joachims, 1999), EM methods (Nigam et al., 2000), graph-based
methods (Blum and Chawla, 2001; Zhu et al., 2003; Pitelis et al., 2014) and deep auto-encoders
(Rifai et al., 2011; Ranzato and Szummer, 2008; Weston et al., 2008).

Recently several different (deep) models have significantly improved the performance on semi-
supervised classification tasks. Kingma et al. (2014) introduced a deep generative model for semi-
supervised learning (DGM) by augmenting the auto-encoding variational Bayes (AEVB) model
(Kingma, 2013; Rezende et al., 2014) algorithm with labeled units. Miyato et al. (2015) introduced
an improved semi-supervised learner by applying adversarial training to deep networks. Finally
Rasmus et al. (2015) introduced a generalization of the ladder network (Valpola, 2014) that has the
ability to learn a latent classification variable.

In this article we introduce the auxiliary deep generative model (ADGM) and apply it to semi-
supervised learning. In the ADGM, the variational encoder model has an extra set of stochastic
variables compared to the generative decoder model. These extra so-called auxiliary variables makes
the variational model more flexible and thus able to improve the variational lower bound (Agakov
and Barber, 2004). The auxiliary variable and the input data is fed into a variational auto-encoder and
a discriminative classifier. Empirically we show that the ADGM, (i) obtain state-of-the-art results
on semi-supervised classification, (ii) is trainable end-to-end without the need for any pre-training,
(iii) have good convergence properties and (iv) that its stochastic auxiliary variable is essential for
good discriminative classification. The Hierarchical variational models approach by Ranganath
et al. (2015) is a closely related recent independently proposed framework that treats the parameters

1

of the variational distribution as auxiliary variables as a means to get a more expressive variational
approximation.

2 Methods
Kingma et al. (2014) introduced a probabilistic approach to semi-supervised learning by stacking a
generative feature extractor (called M1) and a generative semi-supervised model (M2) into a stacked
generative semi-supervised model (M1+M2). M1 is a variational auto-encoder, where the generative
model is defined as pθ(z)pθ(x|z) (decoder with parameters θ), with the variational approximation
being qφ(z|x) (encoder with parameters φ), as replacement for the intractable posterior pθ(z|x)
(Kingma, 2013). M2 includes labels y in the generative model: pθ(x|y, z)pθ(z)pθ(y), decoder
qφ(z|y, x) and a discriminative classifier, qφ(y|x). The generative model p combining M1 and M2
called M1+M2 is (cf. fig. 1a):

M1 : pθ(x|z1) = f(x; z1, θ), (1)
M2 : p(y) = Cat(y|π); p(z2) = N (z2|0, I); pθ(z1|y, z2) = f(z1; y, z2, θ) , (2)

where f(·) are the decoders and Cat(·) is the multinomial distribution. The corresponding inference
model Q is (cf. fig. 1b):

M1 : qφ(z1|x) = N (z1|µφ(x), diag(σ2
φ(x))), (3)

M2 : qφ(z2|y, z1) = N (z2|µφ(y, z1), diag(σ2
φ(y, z1))); qφ(y|z1) = Cat(y|πφ(z1)). (4)

z2y

z1 x

(a) M1+M2 P model.

z2y

z1 x

(b) M1+M2 Q model.

zy

a x

(c) ADGM P model.

zy

a x

(d) ADGM Q model.
Figure 1: Probabilistic graphical models of M1+M2 and ADGM.

Since latent variables z2 and y in M2 are marginally independent, the class specific information can
be modeled through y and remaining information through z2.

However, although both M2 and M1+M2 should be powerful generative models for semi-supervised
learning direct application of these models failed to deliver good results in benchmarks. Kingma
et al. (2014) reported 11.97%(±1.71) classification error for MNIST with 100 labeled examples and
no results were reported for M1+M2. Instead Kingma et al. (2014) trained M1 to get latent features
z1 that was then used as input for training M2.

In this contribution we propose an alternative formulation with two sets of stochastic variables that
converges end-to-end and achieves state-of-the-art performance. The ADGM has the generative
model p defined as pθ(a)pθ(y)pθ(z)pθ(x|y, z) (cf. fig. 1c), where a, y, z are the auxiliary variable,
class label, and latent features, respectively. Learning the posterior distribution is intractable, thus
we define the approximation as qφ(a|x)qφ(z|y, x) and a classifier qφ(y|a, x) (cf. fig. 1d). The
distributions of the generative model p are

pθ(x|z, y) = f(x; z, y, θ); p(z) = N (z|0, I);
p(y) = Cat(y|π); p(a) = N (a|0, I). (5)

And for the corresponding inference model q

qφ(a|x) = N (a|µφ(x), diag(σ2
φ(x))),

qφ(z|y, x) = N (z|µφ(y, x), diag(σ2
φ(y, x))),

qφ(y|a, x) = Cat(y|πφ(a, x)) .
(6)

The key point of the ADGM is that the auxiliary unit a introduces a class specific latent distribu-
tion between x and y allowing a more expressive discriminative distribution qφ(y|a, x). Further the
stochasticity of a maps each input into a distribution qφ(a|x) used for the discriminative classifier,
which is richer than a deterministic dependency between x and y. Note that it is possible to let a

2

be conditioned on x, y, z in the generative model, but we found that this did not improve the perfor-
mance. The ADGM use multi-layered perceptrons (MLP) to model qφ(a|x), qφ(z|y, x), qφ(y|a, x)
and pθ(x|z, y).
For Gaussian distributions we apply the reparameterization trick, introduced in (Kingma, 2013) to
backpropagate the error signal through the latent variables. We approximate the expectations by
drawing unbiased Monte Carlo (MC) estimates ã ∼ qφ(a|x) and z̃ ∼ qφ(z|y, x).
Variational Lower Bound
We optimize the model by maximizing the lower bound on the likelihood. The variational lower
bound on the marginal likelihood for a single labeled data point is

log pθ(x, y) ≥ Eqφ(a,z|x,y)
[
log

pθ(a)pθ(y)pθ(z)pθ(x|y, z)
qφ(a|x)qφ(z|y, x)

]
≡ −L(x, y) (7)

with qφ(a, z|x, y) = qφ(a|x)qφ(z|y, x). For unlabeled data we further introduce the variational
distribution for y, qφ(y|a, x):

log pθ(x) ≥ Eqφ(a,y,z|x)
[
log

pθ(a)pθ(y)pθ(z)pθ(x|y, z)
qφ(y|a, x)qφ(a|x)qφ(z|y, x)

]
≡ −U(x) (8)

with qφ(a, y, z|x) = qφ(z|y, x)qφ(y|a, x)qφ(a|x). The discriminative classifier for the auxiliary
variable model is defined as Eqφ(a|x) [qφ(y|a, x)]. As noted by Kingma et al. (2014) the discrimina-
tive term (6) appears in the objective −U(x), but not in −L(x, y). Kingma et al. (2014) observed
that the classification accuracy could be improved by introducing an explicit classification loss that
for this model reads:

Ll(xl, yl) = L(xl, yl)− α · logEqφ(a|xl)[qφ(yl|a, xl)] , (9)

where α is a weight between generative and discriminative learning. The variational lower bound
for labeled xl, yl and unlabeled data xu is

J =
∑

(xl,yl)

Ll(xl, yl) +
∑
(xu)

U(xu) . (10)

3 Results
Table 1 shows that the ADGM outperforms all previously proposed models on the MNIST dataset.
The model’s convergence to around 1.5% is fast, and from that point the convergence speed declines
(cf. Fig. 2a). In Fig. 2b we visualize 10 Gaussian distributed random samples conditioned on each
class y.

100 labels
AtlasRBF (Pitelis et al., 2014) 8.10% (±0.95)
Deep Generative Model (M1+M2) (Kingma et al., 2014) 3.33% (±0.14)
Virtual Adversarial (Miyato et al., 2015) 2.12%
Ladder (Rasmus et al., 2015) 1.06% (±0.37)
Auxiliary Deep Generative Model (1 MC) 2.25% (± 0.08)
Auxiliary Deep Generative Model (10 MC) 0.96% (± 0.02)

Table 1: Semi-supervised benchmarks on MNIST for 100 randomly labeled data points. The ADGM
was trained by performing 1 and 10 samples.

Fig. 3 shows the information contribution from the auxiliary units a and the latent units z. Like in
Burda et al. (2015), the number of contributing/activated units in z is quite low ∼ 20. The number
of contributing auxiliary units a, on the other hand, is much larger. We speculate that this is due
to the upweighting of the discriminative classification in the lower bound. Fig. 2a shows how the
ADGM outperforms a similarly optimized M2 model and an ADGM where the auxiliary unit is
deterministic. We found that convergence of the M2 model was highly unstable. The result in Fig.
2a is the best achieved.

Implentation details
The ADGM is implemented in Python using Theano (Bastien et al., 2012) and Lasagne (Dieleman
et al., 2015) libraries1. For training, we have used the Adam (Kingma and Ba, 2014) optimization
framework with a learning rate of 3e-4 and exponential decay rate for the 1st and 2nd moment

1Implementation is available in an extension framework to the Lasagne library named Parmesan on https:
//github.com/larsmaaloee/auxiliary-deep-generative-models.

3

https://github.com/larsmaaloee/auxiliary-deep-generative-models
https://github.com/larsmaaloee/auxiliary-deep-generative-models

0 200 400 600 800 1000 1200
epochs

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

cl
as

si
fic

at
io
n
er
ro
r %

M2 (1 MC)
ADGM deterministic q(a|x) (1 MC)
ADGM (1 MC)
ADGM (10 MC)

(a) (b)

Figure 2: (a) 100 sample classification errors for MNIST test set on Kingma et al. (2014) M2
trained with 1 sample, ADGM with deterministic auxiliary units trained with 1 sample, ADGM
trained with 1 sample and ADGM trained with 10 samples. All models were trained with the same
hyperparameters. (b) 100 Gaussian distributed random samples drawn from a 100-dimensional z
with y fixed to each class.

at 0.9 and 0.999, respectively. The learning rate was annealed by .75 every 200 epochs. α was
defined as 0.01 · N , where N is the number of data points. We parameterized the MLPs with two
layers of 500 hidden units using rectified linear units. All stochastic layers used 100 linear hidden
units to parameterize µ and log(σ2). The weights and biases are initialized using the Glorot and
Bengio (2010) scheme. The averaging over the a and z variables were performed by sampling using
the reparameterization trick (Kingma, 2013; Rezende et al., 2014) and the average over y by exact
enumeration so

Eqφ(a,y,z|x) [f(a, x, y, z)] ≈
1

Nsamp

Nsamp∑
i

∑
y

q(y|ai, x)f(ai, x, y, zyi) (11)

with ai ∼ q(a|x) and zyi ∼ q(z|x, y). 1 or 10 samples was used for training and 100 for predictions.

Figure 3: Number of active stochastic units
for an ADGM trained on MNIST 100 la-
bels. We compute KL [p(ai)||q(ai|x)] and
KL [p(zi)||q(zi|x)] for each stochastic unit. A
number close to zero indicates that q(·|x) ≈
p(·).

We used MNIST as benchmark. In order to make a
fair comparison with the ladder network, we have
combined the training set of 50000 examples with
the validation set of 10000 examples. The test set
of 10000 remained as is. We used a batch size
of 200 with the first half of the batch always be-
ing the 100 labeled samples. The labeled data
are chosen randomly, but distributed evenly across
classes. Before each epoch the normalized MNIST
images were binarized by sampling Bernoulli dis-
tributions.

All experiments were carried out on GeForce GTX
TITAN X GPUs. With 10 samples the runtime was
∼64 s/epoch. The training converged to around
1.5% classification error in 200 epochs correspond-
ing to around 3 hours.

4 Conclusion
We have shown that making the discriminative dis-
tribution more flexible by introducing extra auxil-
iary variables gives state-of-the-art performance on the 100 labeled examples MNIST benchmark.
We are in the progress of extending this to other semi-supervised scenarios. It is also of interest to
extend this approach to both fully unsupervised and supervised generative settings. Currently we
are combing the proposed framework with the new tighter bound by Burda et al. (2015), where a
tight bound on p(y, x) may be used directly for classification through p(y|x) ∝ p(y, x).

4

Acknowledgements
We thank Durk P. Kingma and Shakir Mohamed for helpful discussions. This research was sup-
ported by the Novo Nordisk Foundation and NVIDIA Corporation with the donation of TITAN X
and Tesla K40 GPUs.

References
Agakov, F. and Barber, D. (2004). An Auxiliary Variational Method. In Pal, N., Kasabov, N., Mudi, R., Pal, S.,

and Parui, S., editors, Neural Information Processing, volume 3316 of Lecture Notes in Computer Science,
pages 561–566. Springer Berlin Heidelberg.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y.
(2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Blum, A. and Chawla, S. (2001). Learning from Labeled and Unlabeled Data Using Graph Mincuts. In Pro-
ceedings of the 18th International Conference on Machine Learning, ICML ’01, pages 19–26, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance Weighted Autoencoders. arXiv preprint
arXiv:1509.00519.

Deng, J., Dong, W., Socher, R., jia Li, L., Li, K., and Fei-fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In CVPR09.

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., and Sønderby, S. K. (2015). Lasagne: First release.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society
for Artificial Intelligence and Statistics.

Joachims, T. (1999). Transductive Inference for Text Classification Using Support Vector Machines. In Pro-
ceedings of the 16th International Conference on Machine Learning, ICML ’99, pages 200–209, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling, M. (2014). Semi-Supervised Learning with Deep
Generative Models. arXiv preprint arXiv:1406.5298.

Kingma, Diederik P; Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114.

Miyato, T., Maeda, S.-i., Koyama, M., Nakae, K., and Ishii, S. (2015). Distributional Smoothing with Virtual
Adversarial Training. arXiv preprint arXiv:1507.00677.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text Classification from Labeled and Unla-
beled Documents Using EM. Machince Learning, 39(2-3):103–134.

Pitelis, N., Russell, C., and Agapito, L. (2014). Semi-supervised Learning Using an Unsupervised Atlas. In
Calders, T., Esposito, F., Hllermeier, E., and Meo, R., editors, Machine Learning and Knowledge Discovery
in Databases, volume 8725 of Lecture Notes in Computer Science, pages 565–580. Springer Berlin Heidel-
berg.

Ranganath, R., Tran, D., and Blei, D. M. (2015). Hierarchical variational models. arXiv preprint
arXiv:1511.02386.

Ranzato, M. A. and Szummer, M. (2008). Semi-supervised Learning of Compact Document Representations
with Deep Networks. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
pages 792–799, New York, NY, USA. ACM.

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-Supervised Learning with
Ladder Network. arXiv preprint arXiv:1507.02672.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and Approximate Inference
in Deep Generative Models. arXiv preprint arXiv:1401.4082.

Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and Muller, X. (2011). The Manifold Tangent Classifier. In
NIPS’2011.

Valpola, H. (2014). From neural pca to deep unsupervised learning. arXiv preprint arXiv:1411.7783.

Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, pages 1168–1175, New York, NY,
USA. ACM.

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International Conference on Machine Learning, pages 912–919.

5

	Introduction
	Methods
	Results
	Conclusion

