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� e common limitation in computer network se-
curity is the reactive nature of defenses. A new type 
of infection typically needs to be � rst observed 
live, before defensive measures can be taken. To 
improve the pro-active measures, we propose to 
utilize WHOIS database to model and estimate 
the probability of a domain name being used for 
malicious purposes from observed connections to 
other related domains. Model parameters are infer-
red by a Variational Bayes method. Its e� ectiveness 
is demonstrated on a large-scale network data with 
millions of domains and trillions of connections to 
them. � e model enables preventive blacklisting in 
network security.
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Modeling precise domain relations fails due to 
prevalently singular nature of observed connections:

Incomplete/garbled information about domain rela-
tions complicates things further.

Solution we found to work: model factorization.
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Figure 1: Comparison of the proposed method (IV) with the Probabilistic Threat Propagation (PTP).

other threats. For the experiments we have used traffic from the first week of September, October,
November 2014, and January and Fabruary 2015. Each week of traffic contained approximately
7.5 · 109 connections (size of the set X ) out of which approximately 20 · 103 were deemed as ma-
licious) to approximately 2 · 106 domains (size of the set D) with approximately 105 keys retrieved
from the WHOIS database.

The data allows a natural division into training and testing data, where we have used the data from a
previous month for training (inferring values in sets A = ∪l∈Lal, B = ∪l∈Lbl, and M = ∪d∈Dmd)
and the data from the next month for the evaluation.

The proposed method was compared to Probabilistic Threat Propagation [2], which is a method
that propagates a probability of certain network node being malicious based on connection graph.
The method extrapolates maliciousness of “tips”, which are domains used for malicious purposes,
to other connected domains, which were domains sharing at least one key in WHOIS database. In
our experiments “tips” were domains with at least 20% blocked connection, which was a fraction
determined to avoid trivial false positives like yahoo.com.

Figure 1 shows ROC curves when the inference was done on data captured in September, October,
and November, and evaluated on October, November, and January respectively. The ROC curve was
obtained by changing the threshold on md from which the domain would be considered malicious
and counting correctly classified flows (blocked vs. not blocked). The false positive rate is drawn in
logarithmic scale, because in security applications only very low false positive rate are interesting.
Therefore only the region from zero to one percent false positive rate is shown to decide which
algorithm is better. We observe that ROC curves of both methods intersect, but that of the proposed
method is generally above (better) in the region of interest. Moreover, the proposed method does not
require known “tips”, which is an important feature for practical deployment, as it can be executed
autonomously.

5 Conclusion

We have defined and verified a Bayesian model to infer probability of a network entity being in-
volved in malicious activities. The important feature for practice is that the model propagates prob-
ability from entities with observed connections to those without using external information relating
entities together. The model was instantiated to enable preventive blacklisting of yet unobserved
domains using information about observed HTTP request blocks and domain registration records in
the WHOIS database. The scalability of the model was shown on modeling millions of domains
using trillions of web requests.
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1 Model

Model
p(x|md) = Bi(md)
p(md|a, b) = Beta(ad, bd)
ad ≈ aaddr · aemail · areg · aorg
bd ≈ baddr · bemail · breg · borg
p(a∗|ua, va) = Gamma(ua, va)
p(b∗|ub, vb) = Gamma(ub, vb)

Given training data (d, b) ∈ T
the complete model is:

p(M,A,B|T ) ∝ p(M,A,B, T )

= p(T |M)p(M |A,B)p(A)p(B)

1.1 A subsection

We approximate (assuming cond. indep.)

p(M,A,B|T ) ≈ q(M,A,B) =
∏
d∈D

q(md)
∏
l∈L

q(al)q(bl)

(where L = Kaddr ∪ Kemail ∪ Kreg ∪ Korg)
Minimize KL divergence by setting
log q(bl) ∝ EM,A,B\bl [log p(M,A,B|T )]
log q(al) ∝ EM,A\bl,B[log p(M,A,B|T )]
log q(md) ∝ EM\md,A,B[log p(M,A,B|T )]

Using [1] recompute

until convergence.
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Algorithm 1 Variational Bayes inference of model parameters M = ∪d∈Dmd, A = ∪l∈Lal, B =
∪l∈Lbl. The convergence criterion is the change of expected value of md.

1. choose the parameters Θ = (ua, va, ub, vb)

2. choose initial estimates of q(al) and q(bl)

3. For it = 1 to max iterations
(a) ∀d ∈ D recompute q(md)

∀d ∈ D evaluate logmd

∧

, log(1−md)
∧

(b) ∀al ∈ A recompute q(al)

∀al ∈ A evaluate al
∧

, log al
∧

(c) ∀bl ∈ B recompute q(bl)

∀bl ∈ B evaluate bl
∧

, log bl
∧

(d) If convergence criteria < threshold Then break

3 Inference of parameters by Variational Bayes

Since an analytical solution of (5) does not exist due to the integral of the beta distribution not hav-
ing a closed-form solution, a Variational Bayes method [5, 1] approximating posterior distribution
implied by (5) using a product of marginal distributions is evaluated

p(M,A,B|X , θ) ≈ q(M,A,B) =
∏
d∈D

q(md)
∏
l∈L

q(al)q(bl). (6)

The Variational Bayes method minimizes the KL-divergence between the approximation (6) and the
joint pdf (5) by iteratively optimizing individual marginals q(md), q(al), and q(bl) while keeping
all other marginals fixed. After sufficient number of iterations the algorithm converges to a local
minimum. The algorithm is outlined in Algorithm 1 with the marginals1 being

q(md) ∼ Beta


 ∏

l∈k(d)

al
∧

+
∑

x∈X (d)

x,
∏

l∈k(d)

bk
∧

+
∑

x∈X (d)

(1− x)


 , (7)

q(al) ∼ Gamma


ua +

∑
{d∈D|l∈k(d)}

ζd,k(d), va −
∑

{d∈D|l∈k(d)}

ak(d)\l
∧

logmd

∧


 (8)

q(bl) ∼ Gamma


ub +

∑
{d∈D|l∈k(d)}

ζd,k(d), vb −
∑

{d∈D|l∈k(d)}

bk(d)\l
∧

logmd

∧


 , (9)

(10)

where

ζd,k(d) =
[
ψ(ak(d)
∧

+ bk(d)
∧

)− ψ(ak(d)
∧

) + bk(d)
∧

ψ′(ak(d)
∧

+ bk(d)
∧

)(log bk(d)
∧

− log bk(d)
∧

)
]
, (11)

ak(d)\l =
∏

l′∈k(d)∧l′ �=l al′ , bk(d)\l =
∏

l′∈k(d)∧l′ �=l bl′ , and the ·̂ denotes expected value of the
variable. Exact variational marginals do not have an analytical solutions due to the intractability of
the Beta distribution. Therefore we have used approximation proposed in [4] to obtain q(al) and
q(bl). The approximations are based on Taylor expansion of the logarithm of the Beta distribution
in ak(d)
∧

, bk(d)
∧

from previous iteration. Since the Taylor expansion is valid only for ak(d)
∧

, bk(d)
∧

> 1,
both variables are set to one if they are smaller.

4 Experimental results

The proposed method was evaluated on data obtained from web-logs Cisco’s Cloud Web Secu-
rity [3], which is a cloud web proxy scrutinizing the traffic for the presence of known malware and

1Derivation of the marginals can be found in the supplemental material.
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