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Motivation

•Time-series modeling is a ubiquitous task across many domains. We aim
to create a powerful non-linear latent variable model of time-series.

•Patient records are a time series of diagnoses, lab tests, surgical proce-
dures and drug prescriptions that represent observations of underlying
conditions.

•What is the best treatment course for a patient? Which patients are
similar to a given patient? Which policy is the most cost effective for a
specific population? The wide availability of Electronic Health Records
(EHR) gives machine learning the potential for addressing these ques-
tions.

Background

Kalman Filters Generative time series models are characterized by
their action transition functions and their emission functions. Classic
Kalman filters use linear functions for both:

zt ∼ N (G · zt−1 + B · ut−1,Σ) (action transition)
xt ∼ N (F · zt,Γ) (emission)

Stochastic Backpropagation Rezende et al. (2014) and Kingma &
Welling (2013) proposed using a neural net as a variational autoencoder
to optimize a lower-bound on the model log-likelihood:
Counterfactual Inference “What would the patient’s blood sugar
level be had she taken a different medication?”

Probabilistic Model

Variational autoencoder applied to the Kalman filter time-series model
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We apply stochastic backpropagation to learn a non-linear
Kalman filter, and use the model to perform

counterfactual inference.

zt ∼ N (Gα(zt−1, ut−1), Sβ(zt−1, ut−1)) (action transition)
xt ∼ p(xt|zt;Fκ(zt)) (emission)

Gα, Sβ and Fκ are functions parameterized by neural nets

Proposition
For the graphical model we propose, the posterior factorizes as:

p(~z|~x, ~u) = p(z1|~x, ~u)
T∏
t=2
p(zt|zt−1, xt, . . . , xT , ut−1, . . . , uT−1)

Approximating the Evidence Lower Bound

The recognition model prior qφ is parameterized by a neural network φ.
We use the prior factorization:

qφ(~z|~x, ~u) =
T∏
t=1
qφ(zt|zt−1, xt, . . . , xT , ~u)

We maximize the following variational lower bound for training the gener-
ative and recognition models:

log pθ(~x|~u) ≥ L(x; (θ, φ)) =
T∑
t=1

E
qφ(zt|~x,~u)

[log pθ(xt|zt)]− KL(qφ(z1|~x, ~u)||p0(z1))

−
T∑
t=2

E
qφ(zt−1|~x,~u)

[KL(qφ(zt|zt−1, ~x, ~u)||p0(zt|zt−1, ut−1))] .

Experiments

Healing MNIST
Sequences of MNIST digits, where the action is a digit being rotated. We
add random noise, and structured noise in the form of a block on the
top-left corner place on three consecutive digits within the sequence.
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Recognition Models

q-INDEP: (7 layer MLP)
q(zt|xt, ut)
q-LR: (7 layer MLP)
q(zt|xt−1, xt, xt+1, ut−1, ut, ut+1)
q-RNN: (2 layer MLP + 2 layer RNN)
q(zt|x1, . . . , xt, u1, . . . ut)
q-BRNN:
(2 layer MLP + 2 layer bi-RNN)
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Medical Data

•Healthcare records data of 8000 diabetic and pre-diabetic patients.
• Infer future lab test values of A1c and glucose in counterfactual scenarios.
•Patient data: age, gender, and ICD-9 diagnoses code depicting comor-
bidities such as heart failure, kidney conditions or obesity.
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Proportion of patients with high Glucose
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Test log-likelihood for differ-
ent models. Em: emission
model. Tr: transition model.
L: linear. NL: non-linear. All
non-linear models are 3-layer
fully connected ReLU units.
The dimension of the latent
space zt is 30. Recognition
model is a 2 layer MLP + 2
layer bi-directional RNN. 0 500 1000 1500 2000
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49.0 < Age < 57.0
57.0 < Age < 63.0
63.0 < Age < 70.0
70.0 < Age < 98.0

gender is Female
coverage

A1C high
Gluc high

Diabetes Mellitus wo cmp nt st uncntr
Diabetes Mellitus wo cmp nt st uncntrl

Diabetes Mellitus wo cmp uncntrld
Gout NOS

Obesity NOS
Morbid obesity

Anemia in chr kidney dis
Obstructive sleep apnea
Malignant hypertension

Benign hyp ht dis w/o hf
Hyp hrt dis NOS w/o hf

Coronary ath unsp vsl ntv/gft
Coronary athrscl natve vssl

Chronic ischemic heart disease, unspecified
Prim cardiomyopathy NEC

Congestive Heart Failure NOS
Ocl crtd art wo infrct

Periph vascular dis NOS
Pleural effusion NOS

Acute kidney failure NOS
Chronic kidney dis stage III

End stage renal disease
Renal and ureteral dis NOS

Sleep apnea NOS
Impaired fasting glucose
Abnormal glucose NEC

0 < A1c < 5.5
5.5 < A1c < 6.0
6.0 < A1c < 6.5
6.5 < A1c < 7.0
7.0 < A1c < 8.0
8.0 < A1c < 9.0

9.0 < A1c < 10.0
10.0 < A1c < 19.0
0 < Gluc. < 92.0

92.0 < Gluc. < 102.0
102.0 < Gluc. < 113.0
113.0 < Gluc. < 135.0
135.0 < Gluc. < 989.0

A1c High Indicator
Gluc. High Indicator
A1c Level Indicator

Gluc. Level Indicator

Sample Patient. The x-axis denotes time and the y-axis denotes the ob-
servations. The patient was sampled under no medication. The intensity
of the colour denotes its value between zero and one.


