

Motivation

- Time-series modeling is a ubiquitous task across many domains. We aim to create a powerful non-linear latent variable model of time-series.
- Patient records are a time series of diagnoses, lab tests, surgical procedures and drug prescriptions that represent observations of underlying conditions.
- What is the best treatment course for a patient? Which patients are similar to a given patient? Which policy is the most cost effective for a specific population? The wide availability of Electronic Health Records (EHR) gives machine learning the potential for addressing these questions.

Background

Kalman Filters Generative time series models are characterized by their **action transition** functions and their **emission** functions. Classic Kalman filters use linear functions for both:

$$z_{t} \sim \mathcal{N} \left(G \cdot z_{t-1} + B \cdot u_{t-1}, \Sigma \right) \qquad (action \ transvert x_{t} \sim \mathcal{N} \left(F \cdot z_{t}, \Gamma \right) \qquad (em)$$

Stochastic Backpropagation Rezende *et al.* (2014) and Kingma & Welling (2013) proposed using a neural net as a variational autoencoder to optimize a lower-bound on the model log-likelihood:

Counterfactual Inference "What would the patient's blood sugar level be had she taken a different medication?"

Probabilistic Model

We apply **stochastic backpropagation** to learn a **non-linear** Kalman filter, and use the model to perform counterfactual inference.

 $z_t \sim \mathcal{N}(G_{\alpha}(z_{t-1}, u_{t-1}), S_{\beta}(z_{t-1}, u_{t-1}))$ (action transition) $x_t \sim p(x_t | z_t; F_\kappa(z_t))$

 G_{α} , S_{β} and F_{κ} are functions parameterized by neural nets

Deep Kalman Filters

Rahul G. Krishnan, Uri Shalit, David Sontag

Courant Institute of Mathematical Sciences, New York University

Proposition

For the graphical model we propose, the posterior factorizes as:

$$p(\vec{z}|\vec{x},\vec{u}) = p(z_1|\vec{x},\vec{u}) \prod_{t=2}^{T} p(z_t|z_{t-1},x_t,.$$

Approximating the Evidence Lower Bound

The recognition model prior q_{ϕ} is parameterized by a neural network ϕ . We use the prior factorization:

$$q_{\phi}(\vec{z}|\vec{x},\vec{u}) = \prod_{t=1}^{T} q_{\phi}(z_t|z_{t-1},x_t)$$

We maximize the following variational lower bound for training the generative and recognition models:

$$\log p_{\theta}(\vec{x}|\vec{u}) \geq \mathcal{L}(x;(\theta,\phi)) =$$

$$\sum_{t=1}^{T} \mathbb{E}_{q_{\phi}(z_t|\vec{x},\vec{u})} [\log p_{\theta}(x_t|z_t)] - \mathrm{KL}(q_{\phi}(z_t|z_t))] - \mathrm{KL}(q_{\phi}(z_t|z_t)) =$$

$$-\sum_{t=2}^{T} \mathbb{E}_{q_{\phi}(z_{t-1}|\vec{x},\vec{u})} [\mathrm{KL}(q_{\phi}(z_t|z_{t-1},\vec{x},\vec{u}))]$$

Experiments

Healing MNIST

Sequences of MNIST digits, where the action is a digit being rotated. We add random noise, and structured noise in the form of a block on the top-left corner place on three consecutive digits within the sequence.

11111111 (b) Samples: different rotations

Recognition Models

q-INDEP : (7 layer MLP)		-2040
$q(z_t x_t, u_t)$		-2050
\mathbf{q} - \mathbf{LR} : (7 layer MLP)	poou	-2060
$q(z_t x_{t-1}, x_t, x_{t+1}, u_{t-1}, u_t, u_{t+1})$	ikelil	-2070
\mathbf{q} - \mathbf{RNN} : (2 layer MLP + 2 layer RNN)	og L	-2080
$q(z_t x_1,\ldots,x_t,u_1,\ldots u_t)$	est L	-2090
q-BRNN:	Ţ	-2100
(2 layer MLP + 2 layer bi-RNN)		-2110
$q(z_t x_1,\ldots,x_T,u_1,\ldots,u_T)$		(

isition) nission)

(emission)

(a) Reconstruction during training

666655 11111--ssorshul 88888888 arge Rotation R -->///--> 55599955 ノーヘン 6554650 rge Rotation L 2-229 6 2 2 a </1/> 555555555. ininin nnnnnnnn

 $\dots, x_T, u_{t-1}, \dots, u_{T-1})$

$(x_t,\ldots,x_T, ec u))$

 $z_1(\vec{x}, \vec{u}) || p_0(z_1))|$

 $||p_0(z_t|z_{t-1}, u_{t-1}))|$.

(c) Inference on unseen digits

- bidities such as heart failure, kidney conditions or obesity.

of the colour denotes its value between zero and one.

Medical Data

• Healthcare records data of 8000 diabetic and pre-diabetic patients. • Infer future lab test values of A1c and glucose in counterfactual scenarios. • Patient data: age, gender, and ICD-9 diagnoses code depicting comor-

Sample Patient. The x-axis denotes time and the y-axis denotes the observations. The patient was sampled under no medication. The intensity