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Abstract

Kalman Filters are some of the most influential models of time-varying phenom-
ena. They admit an intuitive probabilistic interpretation, have a simple functional
form, and enjoy widespread adoption in a variety of disciplines. Motivated by re-
cent variational methods for learning deep generative models, we introduce a uni-
fied algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular
interest is the use of temporal generative models for counterfactual inference. We
investigate the efficacy of such models for counterfactual inference, and to that
end we introduce the “Healing MNIST” dataset where long-term structure, noise
and actions are applied to sequences of digits.

1 Introduction

Electronic Health Records (EHRs) are collected nationwide and machine learning is increasingly
used to discover patterns within them. A patient record may be viewed as a sequence of diagnoses,
surgeries, laboratory values and drugs prescribed over time. These records yield the potential for
machine learning to answer medical queries: What is the best course of treatment for a patient?
Which of two drugs will save a patient? Can we find patients who are “similar” to each other?
We introduce new techniques for learning generative temporal models from noisy high-dimensional
data, and use the learned models within a causal framework, the first step towards addressing such
questions. We learn a representation of the patient that (1) evolves over time and (2) is sensitive to
the effect of the actions taken by doctors.

We show that recent techniques in variational inference [[15)[10] can be adopted to learn a broad set
of Kalman Filters [8] with a single algorithm. Using deep neural networks, we can enhance Kalman
Filters with arbitrarily complex transition dynamics and emission distributions. We evaluate our
model in two settings. First we introduce “Healing MNIST”, a dataset of perturbed, noisy and
rotated MNIST digits. We show our model captures both short- and long-range effects of actions
performed on these digits. Second, we use EHR data from 8, 000 diabetic and pre-diabetic patients
gathered over 4.5 years (similar to [19]). We present here the results on “Healing MNIST”. The
results on the EHR data will be presented in the full version of this paper[ﬂ

Related Work We point the reader to [5] for a summary of some approaches to learn Kalman
Filters. [4] learn a sequential model over multiple observations using an attention mechanism. [2]
model sequences of length 7" using T variational autoencoders. They use a single Recurrent Neural
Network (RNN) that share parameters. Earlier instances of learning Kalman Filters with Multi-
Layer Perceptrons are considered by [[14]. They approximate the posterior using non-linear dynamic
factor analysis [18]], which scales quadratically with the latent dimension. Closest to our work is that
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of [21]] who use temporal generative models for optimal control using a training algorithm based on
maximizing the likelihood of consecutive pairs occurring within the sequence.

2 Background

Kalman Filters Assume we have a sequence of unobserved variables z1,...,zpr € R®. For each
unobserved variable z; we have a corresponding observation x; € R%, and a corresponding action
u; € R®, which is also observed. In the medical domain, the variables z; might denote the true state
of a patient, the observations z; indicate known diagnoses and lab test results, and the actions
correspond to prescribed medications and medical procedures which aim to change the state of the
patient. The classical Kalman Filter models the observed sequence z1, ...z as follows:

2zt = Gz + Byus_1 + € (action-transition) xy = Fyzy + ny (observation),

where e; ~ N(0,%;), n: ~ N (0,T;) are zero-mean i.i.d. normal random variables, with covariance
matrices which may vary with ¢. In the next section, we show how to replace all the linear trans-
formations with non-linear transformations parameterized by neural nets, and how to overcome the
resulting intractability of posterior inference.

Stochastic backpropagation In order to overcome the intractability of posterior inference during
learning, we make use of recently introduced variational autoencoders [[15} [10] to optimize a vari-
ational lower bound on the model log-likehood. The key technical innovation is the introduction
of a recognition network (denoted qy4), a neural network parameterized by ¢ which approximates
the intractable posterior in the standard variational formulation. The challenge in the resulting
optimization problem is that the lower bound includes an expectation w.r.t. ¢4, which implicitly
depends on the network parameters ¢. This difficulty is overcome by using stochastic backpropaga-
tion: assuming that the latent state is normally distributed g4 (z|z) ~ N (ue(z), Xp(2)), a simple
transformation allows one to take stochastic gradients of E, .| [log pe(z[2)] with respect to ¢.

Counterfactual estimation Counterfactual estimation is the task of inferring the probability of a
result given different circumstances than those empirically observed. For example, in the medical
setting, one is often interested in questions such as “What would the patient’s blood sugar level be
had she taken a different medication?”. Knowing the answers to such questions could lead to better
and more efficient healthcare. We are interested in providing better answers to this type of questions,
by leveraging the power of large-scale Electronic Health Records. [13] framed the problem of
counterfactual estimation in the language of graphical models and do-calculus. If one knows the
graphical model of the variables in question, then for some structures estimation of counterfactuals is
possible by setting a variable of interest (e.g. medication prescribed) to a given value and performing
inference on a derived sub-graph.

3 Model

Our goal is to fit a generative model to a sequence of observations and actions, motivated by the
nature of patient health record data. Denote the sequence of observations # = (x1,...,xr) and
actions @ = (uy,...,ur—1), with corresponding latent states Z = (z1,...,z7). As previously, we

assume that 2; € R%, u; € R, and z; € R®. The generative model for the deep Kalman Filter is
then given by:

21 N./\/(uo; Zo) Zg ~ N(Ga(ztflyutflvAt)asﬁ(ztflvutflvAt)) Ty ~ H(Fn(zt))- (1

Specifically, the functions G, Sg, Fx are assumed to be parameterized by deep neural networks.
We set g = 0, X9 = I, and therefore we have that 6 = {«, 3, k} are the parameters of the
generative model. We use a diagonal covariance matrix Sg(-), and employ a log-parameterization,
thus ensuring that the covariance matrix is positive-definite.

The key point here is that (I)) subsumes a large family of linear and non-linear latent space mod-
els. By restricting the functional forms of G,,Sg,F,, we can train different kinds of Kalman
Filters within the framework we propose. For example, by setting G, (2¢—1,ui—1) = Gizi—1 +
Biui_1,83 = X4, F, = Fyzy where G, By, ¥4, F; are matrices, we can learn classical Kalman Fil-
ters. Within the framework we propose any parametric differentiable function can be substituted in



for one of G, Sg, F,.. Learning such a model can be done using backpropagation as will be detailed
in the next section.

Learning using Stochastic Backpropagation We aim to fit the generative model (see Figure [Ta))
parameters 6 which maximize the conditional likelihood of the data given the external actions, i.e.
we desire maxg log pg(x1 ..., xr|us ... upr_1). Using the variational principle, we maximize a
lower bound on the log-likelihood (denoted L) of the observations Z conditioned on the actions.
We derive an extension of [[15}[10] to the the temporal setting where we use the factorization of the
prior implied by (I)) and an approximation to ¢,;(Z]|Z, @) that decomposes with time. We condition
g not just on the inputs Z but also on the actions «. We bound the conditional likelihood by (see
supplementary for the full derivation):

!

T
£=3 Ellogpo(wilz)] = KL(as(z1)llpo(1) = 3 E [KL(gs(2lz-1)lIpo(zil20-1, 1)
t=1

ze t=2"
2
Equation (2)) is differentiable in the parameters of the model (6, ¢), and we can apply backpropaga-
tion for updating # and the stochastic backpropagation trick for obtaining a Monte-Carlo estimate of
the gradient of the expectation terms w.r.t. ¢.

4 Experimental Section

We implement and train models in Torch [3] using ADAM [9]. In the experiments that follow,
we fix the generative model as follows: G, is a two-layer Multi-layer perceptron (MLP), Sg is a
constant, learned diagonal matrix, F,; is a four-layer MLP. Our code is implemented to parameterize
log S5 during learning. For the sequential variational model g4 we use a two-layer Long-Short Term
Memory Recurrent Neural Net (LSTM-RNN)[22].

Introducing Healing MNIST Healthcare data exhibits diverse structural properties. Surgeries and
drugs vary in their effect as a function of age, gender and ethnicity. Lab measurements are noisy,
and diagnoses may be tentative, redundant or delayed. In health claims data, the situation is further
complicated by arcane, institutional specific practices that determine how decisions by doctors are
repurposed into codes used for reimbursements.

To mimic learning under such harsh conditions, we consider a synthetic dataset derived from the
MNIST Handwritten Digits [11]. We create a dataset where rotations are performed to the dig-
its. The rotations are encoded as the actions () and the rotated images as the observations ().
This realizes a sequence of rotated images. To each such generated training sequence, exactly one
sequence of three consecutive squares is superimposed on the top-left corner of the images in a
random starting location. Finally, we consider learning under 20% bit-flip noise. We consider two
experiments: “Small Healing MNIST”’(40000 sequences of length 5 of a single example of 1 and
5), “Large Healing MNIST” (140000 sequences of length 5 with 200 different 1’s and 5’s). The
large dataset represents the temporal evolution of two distinct subpopulations of patients (of size
100 each). The squares within the sequences are intended to be analogous to seasonal flu or other
ailments that a patient could exhibit which are independent of the actions and last several timesteps.

Figure [2a] shows examples of training sequences (marked TS) from “Large Healing MNIST” pro-
vided to the model, and their corresponding reconstructions (marked R) representing mean proba-
bilities output by the model.

Comparing Recognition Models Using “Small Healing MNIST” we evaluated the impact of differ-
ent variational models on learning, by examining test log-likelihood and by visualizing the samples
generated by the models. We experiment with four choices of variational models of increasing com-
plexity: q-INDEP where ¢(z¢|x;) is parameterized by an MLP, q-LR where q(z¢|zi—1, ¢, T111)
is parameterized by an MLP, q-RNN where ¢(z;|z1,...,x;) is parameterized by an RNN, and
q-BRNN where ¢(z¢|z1, ..., 27) is parameterized by a bi-directional RNN. Figures [1b|and [Ic|de-
pict test log likelihood and samples from the models trained using different recognition networks.
Unsurprisingly, the Bidirectional LSTM RNN, a model capable of summarizing the past and future
while approximating the posterior in a manner similar to the Forward-Backward algorithm, outper-
forms the others in log-likelihood and samples.
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Figure 1: (a) Graphical Model of the Deep Kalman Filter. “Small Healing MNIST”: (b) Mean probabilities
sampled under different variational models with a constant, large rotation applied to the right. (c) Test log-
likelihood under different recognition models.
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Figure 2: “Large Healing MNIST”. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Recon-
structions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 2 timesteps and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

Results on “Large Healing MNIST” Figure [2a] (left) depicts pairs of training sequences, and the
mean probabilities obtained after reconstruction, as learning progresses. The reconstructions show
that the model learns different styles of the digits (corresponding to variations within individual
patients). Figure [2b] has samples under varying degrees of rotation, corresponding for example to
the intensity of a treatment. The model shows that it is capable of learning variations within the
digit, as well as realizing the effect of the action and its intensity.

Figure [2c| shows what happens when we ask the model to reconstruct on data which from a previ-
ously unseen test set. The input image is on the left (with a clean and noisy version of the digit
displayed) and the following sample represents the reconstruction by the variational model from the
input images. Following this, we forward sample from the model using the inferred latent repre-
sentation under a constant action. This idea has parallels within the medical setting where one asks
about the course of action for a new patient. On this unseen patient, the model would infer a latent
state similar to one that exists in the training set. To simulate the medical question: The consequent
samples mimic a response to the question, what would happen if the doctor prescribed the drug
“rotate right mildly” to the new digit at hand.



References

(1]

(2]
(3]
(4]
(3]
(6]

(7]
(8]

(91
(10]
(11]
(12]

(13]
(14]

(15]

(16]
(17]

(18]

(19]
[20]

(21]

(22]

A

Léon Bottou, Jonas Peters, Joaquin Quinonero-Candela, Denis X Charles, D Max Chickering, Elon Portu-
galy, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The
example of computational advertising. The Journal of Machine Learning Research, 14(1):3207-3260,
2013.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville, and Yoshua Bengio. A
recurrent latent variable model for sequential data. arXiv preprint arXiv:1506.02216, 2015.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A Matlab-like environment for
machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. DRAW: A
recurrent neural network for image generation. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, 2015.

Simon Haykin. Kalman filtering and neural networks, volume 47. John Wiley & Sons, 2004.
M Hofler. Causal inference based on counterfactuals. BMC medical research methodology, 5(1):28, 2005.
Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids
Engineering, 82(1):35-45, 1960.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2010.

Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge Univer-
sity Press, 2014.

Judea Pearl. Causality. Cambridge university press, 2009.

Tapani Raiko and Matti Tornio. Variational bayesian learning of nonlinear hidden state-space models for
model predictive control. Neurocomputing, 72(16):3704-3712, 2009.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Paul R Rosenbaum. Observational studies. Springer, 2002.

Sam Roweis and Zoubin Ghahramani. An EM algorithm for identification of nonlinear dynamical sys-
tems. 2000.

Harri Valpola and Juha Karhunen. An unsupervised ensemble learning method for nonlinear dynamic
state-space models. Neural computation, 14(11):2647-2692, 2002.

Finale Doshi Velez. Partially-observable markov decision processes as dynamical causal models. 2013.

Eric Wan, Ronell Van Der Merwe, et al. The unscented kalman filter for nonlinear estimation. In Adaptive
Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000, pages 153-158. IEEE, 2000.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. arXiv preprint arXiv:1506.07365,
2015.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Related Work

Modelling temporal data is a widely studied problem in machine learning. Models such as the Hidden Markov
Models (HMM), Dynamic Bayesian Networks (DBN), and Recurrent Neural Networks (RNN) have been pro-
posed.Here, we consider a widely used probabilistic model: Kalman Filters [8]]. In classical Kalman Filters, the
latent state evolution as well as the emission distribution and external effects are modelled as linear functions
perturbed by Gaussian noise. For real world applications the use of linear transition and emission distribution
limits the capacity to model complex phenomena, and modifications to the functional form of Kalman Filters
have been proposed. For example, the Extended Kalman Filter [7] and the Unscented Kalman Filter [20] are
two different methods to learn temporal models with non-linear transition and emission distributions (see also
[17] and [S]).



The literature on sequential modeling and Kalman Filters is vast and here we review some of the relevant work
on the topic with particular emphasis on recent work in machine learning.

[2] model sequences of length 7" using 1" variational autoencoders. They use a single Recurrent Neural Net-
work (RNN) that (1) shares parameters in the inference and generative network and (2) models the prior and
approximation to the posterior at time ¢ € [1, ... 7] as a deterministic function of the hidden state of the RNN.
There are a few key differences between their work and ours. (1) they do not model the effect of external
actions on the data, (2) their choice of model ties together inference and sampling from the model whereas we
consider decoupled generative and recognition networks, and (3) The time varying “memory” of their resulting
generative model is both deterministic and stochastic whereas ours is entirely stochastic. i.e our model retains
the Markov Property and other conditional independence statements held by Kalman Filters.

This latter property means that [2]]’s method cannot be readily adopted for counterfactual inference, since there
is no clean way of letting interventions persist in the model.

Early instances of learning Kalman Filters with Multi-Layer Perceptrons was considered by [14]. They approx-
imate the posterior using non-linear dynamic factor analysis [[18]], which scales quadratically with the latent
dimension. Closest to our work is that of [21] who use temporal generative models for optimal control. While
[21] aim to learn a locally linear latent dimension within which to perform optimal control, our goal is differ-
ent: we wish to model the data in order to perform counterfactual inference. Their training algorithm relies on
approximating the bound on the likelihood by training on consecutive pairs of images.

In broad strokes, our work extends that of [21] to training with arbitrarily long sequences. The factorization
of the prior and posterior, also made use of in [2], enables us to retain a tractable bound on the log likelihood.
By varying the functional form of G, S3, F, we can learn different variants of Kalman Filters using the same
algorithm.

In general, control applications deal with domains where the effect of action is instantaneous, unlike in the
medical setting. In addition, most control scenarios involve a setting such as controlling a robot arm where the
control signal has a major effect on the observation; we contrast this with the medical setting where medication
can often have a weak impact on the patient’s state, compared with endogenous and environmental factors.

There is a vast literature about estimating expected counterfactual effects over a population - see [[12}16}|16]] for
overviews. Another line of work exists in the computational advertising literature, when one is often interested
in more specific counterfactuals such as “how would the page-views change if I had used a different advertise-
ment”. [[1]Jmodel a complex machine learning and ad-placement system, for which much of the causal structure
is known. They are able to derive estimates and confidence intervals for counterfactual questions pertaining to
the system.

B Lower Bound on Likelihood

Figure [Ia] depicts both the graphical model and the variational approximation to the posterior. We derive the
lower bound on the likelihood of the data.

log po (i) >
(Jensen’s Inequality)
A 10g POG@)Po (£]Z, T)
4o (2)log —————F———
/g ’ 4 (?)
B [log pe (|2, @)] — KL(g(2)|Ipo(2]@)) =
94 (2

N

(Using z 1L z—+|2)
T
> E [logpe(i|ze, ui—1)] — KL(gs(2)]|po(2]@))-

=1 90 (t)



We can show that the KL divergence between the approximation to the posterior and the prior simplifies as:

KL(q(z1,...,2r)||lp(21,- .-, 27))
p(z1,22,...,27)
(z1) ...q(27) log —_— 7 -
/ / q(z1) ... q(zr)
(Factorization of the variational distribution)

/ / (z1) .- q(or)

p(z1)p(22]21,u1) . . . plzr|2r—1,ur—1)

q(z1) ... q(zr)
(Factorization of the prior)

/ / (z1)...q(zr) log EZ; 3)

+ Z/ / (21)...q(zr) log %

:/ q(z1) log / / (2¢)log —m——~ p(z |Zt )
Z1 zZt—1 Y 2t ( )

(Each expectation over z is constant for t ¢ {t,t — 1})
= KL( (z1)[lp(21))

+Z E  [KL(g(z:)||p(2e|2ze—1, ue—1))]

q(ze—1

log

For evaluating the marginal likelihood on the test set, we can use the following Monte-Carlo estimate:

s s
1' Z s o=
) = g E: T Dp ) 5<s>‘x ) a(717) )

This may be derived in a manner akin to the one depicted in Appendix E [15] or Appendix D [10].

The log likelihood on the test set is computed using:

P25 -

s
1
log p(%) = log 5 gz:zl exp log { PECIE

() may be computed in a numerically stable manner using the log-sum-exp trick.
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