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Abstract

Modern treatments of principal component analysis often focus on the esti-
mation of a single factor under various structural assumptions or priors e.g.
sparsity and smoothness, then the procedure is extended to multiple fac-
tors by sequential estimation interleaved with deflation. While prior work
has highlighted the importance of proper deflation for ensuring the quality
of the estimated factors, to our knowledge, proposed techniques have only
been developed and applied to non-probabilistic principal component anal-
yses, and are not trivially extended to probabilistic analyses. Using tools
recently developed for constrained probabilistic estimation via information
projection, we propose a deflation method for probabilistic principal com-
ponent analysis. The factors estimated using the proposed deflation regain
some of the interpretability of classic principal component analysis such as
straightforward estimates of variance explained, while retaining the ability
to incorporate rich prior structure. Experimental evaluation on neuroimag-
ing data show that deflation leads to improved interpretability and can
improve variance explained by each factor.

1 Introduction

Principal Component Analysis (PCA) is a well known technique for data exploration and
dimensionality reduction [3]. The goal of PCA is to represent a centered data matrix as a
linear combination of few basis vectors. In the classical deterministic setting, factors are
extracted as orthonormal vectors that maximize the explained variance in the data matrix.
Beyond classic PCA, various extensions have been proposed that incorporate sparsity and
other domain structure, or are designed to incorporate useful statistical properties such as
noise tolerance in high dimensions [4, 16, 1, 5, 11] .

Most modern treatments of principal component analysis and its extensions focus on the
estimation of a single factor, leaving multi-factor extensions to sequential estimation in-
terleaved with deflation. Informally, the purpose of deflation is to minimize the influence
of previously computed factors on subsequent factors, most often by assuming that sub-
sequent factors are mutually orthogonal. Mackey [10] investigated the effect of deflation
choices on the quality of inferences from sparse PCA, showing that careless deflation did
not preserve orthogonality and could lead to pathological results such as estimating the same
factor multiple times without explaining additional variance. Solving for factors one at a
time is more than a mere convenience, as sequential estimation may be necessary to enable
scalability for modern “big data” problems. Further, selecting the appropriate number of
factors (the rank) via sequential estimation avoids the significant computational overhead
of re-estimating all the factors each time the rank is changed, which is required without
proper deflation. Several authors have explored probabilistic variants of principal compo-
nents analysis [2, 12, 6]. Despite the rich prior literature on PPCA, research has primarily
focused on batch inferences and do not incorporate notions of proper deflation. Further,
proposed techniques for deflation have only focused non-probabilistic principal component
analyses, and are not trivially extended to probabilistic analyses. In this manuscript, we



seek to bridge this gap in the literature by highlighting issues that may occur with im-
proper deflation. As a remedy, we propose a deflation method for probabilistic treatments
of principal components analysis.

Our contributions are as follows: (1) we propose a novel deflation technique for probabilistic
PCA via information projection of the means of subsequent factors to orthogonal subspaces
based on recent techniques for probabilistic estimation subject to constraints via information
projection by Koyejo et al. [9]; (2) we explore an application of the proposed deflation
approach to sparse probabilistic PCA by extending a recent technique for sparse submodular
probabilistic PCA [6]; (3) we establish a correspondence of the proposed (sparse and non-
sparse) PPCA algorithms to known deterministic techniques under special conditions, which
may be of independent interest (this discussion is presented in the supplement).

Experimental evaluation on neuroimaging data shows that deflation leads to improved in-
terpretability and can improve variance explained by each factor.

Notation: We represent vectors as small letter bolds e.g. u. Matrices are represented by
capital bolds e.g. X, T. Vector/matrix transposes are represented by superscript {. The
ith row of a matrix M is indexed as M, ., while j'" column is M. ;. Sets are represented
by sans serif fonts e.g. S. For a vector u € R%, and a set S of indices with |S| = k, k < d,

us € R* denotes subvector of u supported on S.

2 Information Projection onto Subspaces

In this section, we illustrate the use of a recent technique of information projection to restrict
a distribution to a subspace in the Fuclidean space. These results are applied for deflation
in probabilistic PCA by restricting the support of subsequent factors to be orthogonal to the
subspace spanned by means of previously extracted factors. For completeness, we present
the relevant background in the supplement.

Let M be the target subspace onto which we aim to restrict a probability density p. The
following proposition is a special case of a result from Koyejo et al. [9].

Proposition 1. Define characteristic function ¢ : R — R as dpaq(x) =0 if x € M, and
dm(x) >0 if v ¢ M. The restriction of the density p to a subspace M can be obtained as:

arg min KL(qllp) s.t. Eglér(x)] = 0. 1)

2.1 Information Projection of Gaussians onto Subspaces

The special case where p is a Gaussian is of particular to our development of deflation
for (sparse) PPCA. Let N (p,S) represent a multivariate Gaussian distribution with mean
p € R? and covariance S € R4, Let M represent the orthogonal complement of a
subspace M. We denote the projection matrix associated with the subspace M by P 4.
The characteristic function of the set M is given by ¢a(z) := 2TPry, 2. It is clear that
reEM = oppm(z)=0and z ¢ M = Pp(x) > 0.

When p is Gaussian, it is known that the information projection onto P, is also a
Gaussian distribution [8, 7]. We emphasize that this is not an assumption, but rather
a property of information projection. Thus, the search for the information projection
may be restricted to optimization over the members of the family ¢ ~ N(a,B) iden-
tified by the mean and covariance {a,B}. The constraint in (1) can be expanded as
Eqlom(z)] =0 = tr(P/\/uanr —|—PMLB) =0 = tr(PMLaaT) =0and tr(Pp, B) =0
(since all projection matrices are positive semidefinite). Expanding Equation 1 using def-
inition of KL divergence between two multivariate Gaussian distributions results in the
decoupled optimization problems:

H}?i’n tr(S*lB) —IndetB s.t. tr(Pay, B) =0,
min (a — p)'S™ (a — p) s.t. tr(PMlaaT) —0.

As outlined in [8, 7], these are solved by (B*)~! = Py4S™'P s and a* = B*P (S~ . Thus,
the information projection of p ~ A (u,3) to the subspace M is given by ¢* ~ N (a*, B*).



M

D 13 o o i
0o ——t’
et

C —»@
—

N
(b) Estimated model
Figure 1: Plate model for Probabilistic Figure 2: Simulated data example show-
PCA. The matrix C is the prior design ing incorrect estimates using the naive de-
matrix. flation.

3 Deflation for Probabilistic PCA

We consider n observations of d dimensional vectors stacked as the data matrix T € R"*<,
Without loss of generality, we assume that the matrix is centered i.e. each column zero mean.
The data matrix is modeled as a product of parameter X and latent variable W which has
the matrix-variate normal prior MVN(0, C, I). The observation model is T = XW + ¢,
where € is the noise with prior €;; ~ N (0,0?) (See Figure 1).

Motivating Example: Consider the following example showing the a potential failure of
probabilistic PCA with naive deflation. We selected the factors and sample the loadings

1 0
and noise as: W = [0 1|, xx ~ N(0,I), e, ~ N (0,I) where n = 100,000. Note
0 0

that this generative scheme adheres to the specification of the PPCA above. We applied
probabilistic PCA of Tipping and Bishop [13] sequentially using the naive deflation based on
the estimated expected factor. As shown in Figure 2, the procedure estimated degenerate

11
factors with expected value: | 0.1 —0.1| rounded to two significant digits. This is partially

due to the noise and the effects of prior regularization. Such a degenerate result was not
observed for the full model fit (joint estimation of all factors) or with the proposed deflation
that enforces orthogonality, where the correct factors were recovered. Fitting a full model
however is less scalable, and loses on the opportunity of run time model selection. The
interpretation of individual factors as directions maximizing explained variance sequentially
is also no longer valid. An alternative to retain such an interpretation would be to add
orthogonality in the full model which may not be easy as it requires handling distributions
on the Grassmanian [15].

3.1 Orthogonal Deflation

Probabilistic PCA is typically solved by an EM algorithm. We modifiy the inference by
restricting the E-step. We propose deflation following the classic definition of orthogonal-
ity. Specifically, we consider orthogonality between the posterior means of the estimated
subspaces. This is implemented using the information projection approach outlined in Sec-
tion 2. Let M? be subspace spanned by means of first i factors i.e. the subspace spanned

by U;Zl E[W;_]. We restrict the support of factor (i + 1) to be M .



Let Z;, =T — X,;;X ;E[W, |. The variational E-step update for the it" factor is given by

5o

q;(W;. ) ~ N(m;, 3;) where:

_ 1 _ 1
Ei I PMifil) (O_Q(XT,zXJ)I +C 1) PMS_FU’ m; = ﬁziPM(f*l)ZIX"i' (2)

The M-step is also straightforward to derive and is presented in the supplement. We term
the resulting procedure of sequential estimation and deflation Orthogonal Probabilistic PCA
(oPPCA).

3.2 Deflation for Sparse Probabilistic PCA (soPPCA)

The proposed deflation may also be extended to sparse Probabilistic PCA, where the support
of factors is to be restricted to a few dimensions. We focus on the approach proposed by
Khanna et al. [6] as it directly utilizes information projection to impose sparsity on the
factors, and is a special case of our framework for restriction to subspaces. Thus, for factor
i and given k; < d, we can directly extend the variational E-step to restrict the support
to the best k; dimensions in terms of the minimum KL divergence. Khanna et al. [6] show
that a greedy search for the best k; dimensions is efficient by exploiting supermodularity of
the cost function to be minimized. Let S; be the support set selected for factor ¢ in this
fashion. Combining with the orthogonal deflation approach developed in 3.1, the resulting
variational E-step is solved as q; ~ N(c;, D;):

(D)™ =Ps; = 'Ps;, ¢ = DPs; X ', 3)

We term the overall procedure sparse orthogonal probabilistic PCA (soPPCA). More details
are in the supplement.

4 Experiments

In this section we present empirical results to illustrate the utility of orthogonality in prob-
abilistic PCA models in practice. The details of the preprocessing the data are presented in
the supplement. For the three fMRI datasets, we compare the ratio of variance explained
by first 6 sparse components to the total variance in the dataset. For d = 100, 1000, 10000,
each sparse component has sparsity & = 10, 10, 60, respectively. To illustrate the predictive
power obtained by the use of proper priors, we split the data 50-50 training and testing.
We find the k sparse principal components on the training data, and use the extracted
components to estimate the variance explained on the out of sample test data. We compare
against: Generalized Power Method [5] (Gpower), PCA via Low rank [11] (LRPCA), Trun-
cated Power Method [14] (Tpower), Full Regularized Path Sparse PCA [1] (PathSPCA),
emPCA [12], submodPCA [6]. We plot the ratio of explained variance along with all the
above mentioned methods. Figure 3 shows the plots for all the three datasets. soPPCA
performs better than all the other methods on the three datasets. Of special note is the gain
in performance over submodPCA which uses naive deflation as opposed to the orthogonal
deflation proposed in this paper.
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Figure 3: Performance on fMRI Data Out of Sample
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Supplement: A Deflation method for Orthogonal
Probabilistic PCA

1 Background and Related Work

Let T € R"*? represent the data matrix, with n samples and dimensionality d. Without loss of
generality, we assume that the data matrix is mean centered in each dimension. Given a desired rank
r, PCA decomposes a centered data matrix into factors W € R”*¢ and loadings X € R™*".

In the classical deterministic setting, factors are extracted as orthonormal vectors that maximize the
explained variance in the data matrix. The first principal component w € R? may be computed as:

) )

max w!Sw
[lwll2=1

where ¥ = TTT € R%*9 is the data covariance matrix. The solution is the eigenvector of the co-
variance matrix which is associated with the largest eigenvalue. The associated variance explained
is simply the value of the cost function (1) at the solution. To obtain the next factor, the covariance
matrix is deflated to remove the variance component explained, then (1) is re-solved with the de-
flated covariance. Using Hotelling’s deflation [2], the subsequent covariance matrix at step ¢ + 1 is
computed from the i*" covariance matrix as:

Y =3 - Wiwjziwiwjv 2

where 3y = X and wy is the first factor. Alternatives to Hotelling’s deflation include Schur com-
plement deflation and orthogonal projection (see [6] for more details).

While the covariance approach is perhaps the most popular, an alternative and equivalent approach
is to estimate both the factors and the loadings s € R? to minimize the reconstruction error Pearson
[9] as:

min  ||T — xw'|[%. (3)

x,[|wl2=1

The optimal w is given by the left singular vector of the data matrix which is associated with the
largest singular value and x is the corresponding right singular vector multiplied by the singular
value. The associated variance explained can be computed using the same equation as the covariance
approach (1) at the solution. The reconstruction error view suggests the naive deflation for the
subsequent factors by replacing the data matrix with the residual in (2.1), where the residual is given
by:

Tir =Ty - x;w], @)
where Ty = T and x is the first loading vector. The naive deflation is equivalent to other deflation
techniques in the classic setting.

Probabilistic PCA (PPCA) is the probabilistic extension of the deterministic PCA. The likelihood
is chosen to match the reconstruction error view of the classic PCA. The factorization can then be
obtained by maximizing the log likelihood, typically by EM algorithm to solve for all r factors at
the same time.

Related Work on PPCA: Probabilistic PCA was first proposed by Tipping and Bishop [12] based
on an extension of the well established factor models in statistics. Tipping and Bishop [12] showed
that the result was equivalent to standard PCA under certain choices of hyperparameters, and gen-
eralized PPCA to incorporate priors on the loadings. Smidl and Quinn [11] extended this work to a



full Bayesian treatment which included priors on both factors and loadings, and considered the use
of a appropriate priors on the factors to enforce orthogonality. Beyond standard PCA, several au-
thors have proposed additional priors to encourage sparsity or non-negativity on the factors[1, 10].
Perhaps the work closest to ours is Khanna et al. [3] who applied the information projection ap-
proach for sparse probabilistic PCA. However, like other prior work, Khanna et al. [3] focused on
single factor estimation and did not consider deflation. It is clear that the reconstruction error view
of classic PCA is equivalent to modeling using the Gaussian likelihood.

Transpose of Tipping and Bishop [12]: We note an important difference between our modeling
approach from that of Tipping and Bishop [12]. Tipping and Bishop [12] assumed that the factors
are fixed parameters, and the loadings are random variables. For problems of interest, we are more
interested in incorporating structural priors on the factors, so we assume that the factors are random
variables while the loading are fixed parameters. In practice, both approaches are trivially equivalent
by replacing the data matrix by its transpose.

1.1 Constrained Probabilistic Inference via Information Projection

In the interest of a self contained discussion, this section outlines relevant background constrained
probabilistic inference via information projection, which will be useful for constructing our pro-
posed deflation technique. We begin with a definition Kullback-Leibler divergence and the the
information projection.

Let X represent the sample space of interest. Let P represent the set of bounded densities supported
on X.

Information Projection: Let p € P and ¢ € P, then the the Kullback-Leibler divergence [5]
between p and q is defined as

KL(alp) = [ _ a(o)los ]‘iggdm

Given a set @ C P, the information projection of p € Q to the set Q is given by:
inf KL .
Inf) (qllp)

As we only consider closed subsets, inf above can be replaced by min. Let S C X represent a closed
subset of X, so Ps is the set of all probability densities supported on S. Following Koyejo et al.
[4], Khanna et al. [3], our analysis will focus on the information projection of p onto Ps. We will
sometimes refer to this as the information of p to the set S.

Domain restriction: Let p be a probability density defined on a measurable set X, and let S C X,

then ps is the S-restriction of p: ps(z) = 0if z ¢ S, ps(z) = % ifx eS.
SES

The following Lemma establishes the equivalence of domain restriction and a certain information
projection. As a result, domain restriction may be solved as a variational optimization problem, and
provides an alternative way to estimate the restriction

Lemma 1 (Koyejo et al. [4]). Let p be a probability density defined on a measurable set X, S C X
be a closed set, ps be the S-restriction of p, Ps be the set of all probability distributions supported
on S then ps = mingep, KL(q||p).

2 Iterated Projections

Theorem 2 (Iterated Information Projection [4]). Let 7 : [n] — [n] be a permutation function and
{Crtiy | Creiy C X} represent a sequence of sets with non empty intersection B = () C; # (. Given
a base density p, let qo = p, and define the sequence of information projections:

q; = argmin KL(q|¢;-1),
1€F ¢

then qx = Qdn is independent Ofﬂ. Further:
* i .
g« = min KL(qllp)



2.1 Inference for Probabilistic PCA via Variational EM

Probabilistic PCA is typically solved by an EM algorithm. The EM obviates construction of the full
covariance matrix, and instead enables working with the data matrix while returning both the load-
ings and factors. Expectation Maximization can be described using the free energy interpretation
given by Neal and Hinton [8]. Maximizing the negative log-likelihood can be shown to be equivalent
to maximizing a free energy function .# (see Equation 5). The E-step can be viewed as the search
over the space of distributions ¢ of the latent variables W, keeping the parameters O fixed (Equation
6), and the M-step can be interpreted to be the search over the parameter space, keeping the latent
variables distribution ¢ fixed (Equation 7). The cost function for the EM is given by [8]:

7 (q(W),0) = —KL(¢(W)|[p(W|T; 0)) + log p(T; ©). 5)

with the E-step and M-step given by:
E-step: max .7 (¢(W), 9), (6)

q

M-step: max F(q(W),0). (7

This view of the EM algorithm provides the flexibility to design algorithms with any E and M steps
that monotonically increase .%. An unconstrained optimization over ¢ in Equation 6 returns the
posterior p(W|T; ©). Variational methods perform the search for best ¢ over a constrained set [13]
using constrained KL minimization. Let D be the set of distributions over W that fully factorize
over individual rows of W : ¢(W) = []:_, ¢;(W,,.), and V4, ¢; is Gaussian. We restrict the search
over g to D. More commonly, this restriction is known as the mean field variational approximation.
Based on the factorization assumption, the KL minimization separates out for each ¢ and can be
solved for each g; iteratively.

Naive Deflation: As generative models do not modify the data matrix directly, deflation is
achieved implicitly by fixing the distributions of the estimated factors ¢(W\;) when estimating
the distribution of the new factor ¢(w;). Following the E-step 6, the effect on the model is straight-
forward to compute as (up to additive and multiplicative constants):

2
Eqw,,) [log P(T|X, W\, x;,W;)] o HT — XEqw,,) (W] - XiW;r

With factors j < ¢ fixed, it is clear that this is equivalent to the naive deflation of (4) using the
estimated posterior mean.

3 Reduction of oPPCA to PCA

The naive deflation is reminiscent of the Hotelling deflation on the data matrix. Indeed, if C =1
and m; are normalized, by substituting the value of X _; from the M-step into the deflation equation,
we compute:

Z;=T(I- ¥ ;a;m;m}) (8)
for constants a; (which represent the explained variance by factor m; while like in PCA and PPCA,

o2 measures the noise or unexplained variance).

Proposition 3. If C = I the means of factors estimated by oPPCA correspond to the factors esti-
mated by deterministic PCA.

Proof Sketch. Substitute the value of X ; from the M-step into the update equation of m; in the
E-step equation to see that solving for the first factor m; is equivalent to performing power iterations
on TTT. For the subsequent factors, solving for m; is equivalent to performing power iterations on
the deflated matrix (I — ;<;0m;m! ) THT(I — 5 <;05myml). O
3.1 Deflation for Sparse Probabilistic PCA (soPPCA)

The proposed deflation using the framework may also be extended to sparse Probabilistic PCA,
where the support of factors is to be restricted to a few dimensions. We focus on the approach



proposed by Khanna et al. [3] as it directly utilizes information projection to impose sparsity on
the factors, and is a special case of our framework for restriction to subspaces. Thus, for factor
7 and given k; < d, we can directly extend the variational E-step to restrict the support to the
best k; dimensions in terms of the minimum KL divergence. Khanna et al. [3] show that a greedy
search for the best k; dimensions is efficient by exploiting supermodularity of the cost function to
be minimized.

Let Si, be the set of all subspaces of dimension k; spanned by k;-sized subsets of the power set
of set of standard bases {e;,5 € [1..d]}. Also, let p; be the full posterior for the i*" factor. The
variational E-step for sparse factor W; _is given by:

min KL(3;(W; )||pi (W, |Z;; X i, 02)). 9)
SUPP(!L(W%,,))G(PM(LFU05) <q ( ’ Jlp:( ' | ’ ))

SESk,;

The support constraint on ¢ requires information projection onto an intersection of two sets. It
can be shown that it is equivalent to minimizing the constrained KL divergence by enforcing the
support constraints of each set one after the other. This equivalence is due to a property of iterated
information projections (see supplement and [4] for details). Following the optimization for the
support dimensions S; (which is solved greedily owing to the supermodularity), and combining
with the proposed orthogonal deflation, the resulting variational E-step is solved as g; ~ N (c;, D;):

(D)™ =Ps:X; 'Ps:, ¢; = DPs: X 'm; (10)

We term the overall procedure sparse orthogonal probabilistic PCA (soPPCA).

4 Reduction of soPPCA to the Truncated Power Method

Truncated power method is a simple algorithm to evaluate k—sparse principal eigenvector of a pos-
itive semidefinite matrix. It is similar to the standard power method, except that at every iteration it
truncates the iterating vector to top-k absolute values and zeros out the rest of the vector before nor-
malizing (see Yuan and Zhang [14] for details and recovery guarantees). The following proposition
shows an equivalence between a single factor from soPPCA and the truncated power method.

Proposition 4 (Reduction to the truncated power method). If C = I, the normalized mean of the
factor my is equal to the principal sparse eigenvector obtained by the truncated power method on
the covariance matrix of T.

Proof. If C = 1, the optimization problem reduces to (by combining E-step and M-step, and ignor-
ing scaling constants since they vanish when normalizing):

max (Psr;)(Psr;) = max rirk = max abs(rk) = max abs(T!Tm
SGSkl( S 1) ( S 1) Kc[d] KK Kc[d] ( K) Kc[d] ( 1)
|K|=F; IK|=F; IK|=k;

O

Orthogonal projection deflation of the covariance matrix involves a Gram-Schmidt procedure to
build orthogonal set of factors from possibly non-orthogonal ones obtained after projection deflation
[6]. The following corollary shows an equivalence between soPPCA and the truncated power method
with orthogonal projection covariance deflation.

Corollary 5. If C = 1, the means of the factors estimated by soPPCA recover the sparse eigenvec-
tors obtained by the truncated power method with orthogonal projection deflation.

Proof Sketch. Follows from Proposition 4, the projection deflation formula 8 and the fact that pro-
jection deflation with truncated power method is equivalent to orthogonal projection deflation. [



Table 1: Ratio of variance explained for first 10 factors

| PPCA+deflation by subtract. oPPCA
| 0.036 0.085

5 Extra experiments

5.1 Simulated data

To validate the oPPCA model, we generate simulated data as follows. We fix n=1000, d=10000. We
fix the low rank r=100, and generate low rank factors and loadings from normal gaussian. We take
the outer product of these factors and loadings to get an n X d matrix of rank r. We run PPCA with
standard subtraction deflation, and compare with oPPCA for 10 factors. The results are in Table 1.
As expected, using oPPCA which restricts the support of subsequent factors to be orthogonal to
already selected factors gives much better variance explained.

(a) , (b)

(c) (d)

Figure 1: Brain plots of few factors extracted from fMRI data. The top-6 extracted factors are
consistent with the motion artifacts similar to those obtained by ICA during fMRI processing.

6 fMRI data details

Resting state (Functional Magnetic Resonance Imaging) fMRI data are commonly analyzed in order
to identify coherently modulated brain networks that reflect intrinsic brain connectivity, which can
vary in association with disease and phenotypic variables. We examined the performance of the
present method on a resting-state fMRI scan lasting 10 minutes (3T whole-brain multiband EPI,
TR=1.16 secs, 2.4 mm resolution), obtained from a healthy adult subject. Data were processed
using a standard processing stream including motion correction and brain extraction (FSL).

The data originally captured has 518 data points, and over 100,000 dimensions. We cluster the
original set of dimensions to fewer dimensions using the spatially constrained Ward hierarchical
clustering approach of [7], to produce three smaller dimensional datasets with 100, 1000, 10000
dimensions. This makes the dataset challenging to deal with because we have cases where the
dimensionality exceeds the number of datapoints. We incorporate smoothness via spatial correlation
matrix C on the prior on W. C is obtained as covariance corresponding to MRF with neighboring
voxels connected with unit weight.
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