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Abstract

Stochastic approximation methods have recently gained popularity for variational
inference, but many existing approaches treat them as “black-box” tools. Thus,
they often do not take advantage of the geometry of the posterior and usually
require a decreasing sequence of step-sizes (which converges slowly in prac-
tice). We introduce a new stochastic-approximation method that uses a proximal-
gradient framework. Our method exploits the geometry and structure of the vari-
ational lower bound, and contains many existing methods (like stochastic varia-
tional inference) as special cases. We establish the convergence of our method
under a non-decreasing step-size schedule, which has both theoretical and prac-
tical advantages. We consider setting the step-size based on the continuity of the
objective and the geometry of the posterior, and experimentally show that our
method gives a faster rate of convergence for variational-Gaussian inference than
existing stochastic methods.

1 Introduction

Stochastic methods have recently gained popularity as a method for variational inference to maxi-
mize lower bounds to marginal likelihoods [1]]. Stochastic-approximation gradient-descent (SGD)
methods have now been extensively applied for variational inference in latent-variable models
[2, 13,14, 15, 16} [7]. These methods scale well to large datasets and are widely applicable due to their
simplicity. However, such “black-box” approaches do not exploit the structure of the variational ob-
jective function and usually converge slowly. For example, the variational objective often consists
of both convex and non-convex parts and exploiting this structure could improve convergence.

Another problem with existing black-box methods is that most of them ignore the geometry of
the variational parameter space. One of the most popular methods, stochastic variational inference
(SVI), does take the geometry into account by using natural gradients [1]], but unfortunately can only
be applied to a limited class of models, such as conditionally-conjugate exponential-family distri-
butions. On the other hand, exploiting Bregman divergences to adapt to the structure of problems
is quite popular in the optimization community, where it is known as mirror descent [8]. However,
there are only a small number of variational methods that exploit the geometry of the problem in
such a way (e.g. [9, [10]).



As a result, many existing stochastic methods lack a principled approach for step-size selection
and usually suffer from slow convergence. In most cases, convergence is only guaranteed under a
decreasing step-size sequence [11]. It is hard to find a good schedule of step sizes in practice and
this typically leads to poor practical performance. Many approaches rely on automatic methods for
step-size selection (e.g. AdaGrad [[12]] and ADADELTA [13]]) which, when used as a black-box, do
not exploit the structure and geometry of the problem.

In this paper, we propose a stochastic-approximation variational method based on a proximal-
gradient framework. The proximal-gradient framework splits the variational bound into convex and
non-convex parts, thereby taking the structure of the lower bound into account. In this framework we
can use a divergence function, like the Kullback-Leibler (KL) divergence or other Bregman diver-
gences, to incorporate the geometry of the posterior in the variational objective. By doing this, we
get existing methods like SVI as special cases of our method. Each step in our method corresponds
to solving a simple problem where the non-convex part is linearized and for which closed-form
expressions often exist.

We establish the convergence of proximal-gradient stochastic variational methods under very general
conditions. We prove that in many cases these stochastic methods can converge with a constant step-
size and thus do not require the decreasing step-size sequences that destroy practical performance.
For example, when the posterior belongs to an exponential family, the step-size can be set to be
a../L. Here, L is the Lipschitz constant of the gradient of the non-convex part and «, is a constant
related to the partition function of the exponential family.

Background on variational inference and notation: We first briefly describe the model set-up.
Consider a general latent variable model with a data vector y of length N and a latent vector z of
length D. The joint distribution under the model is denoted by p(y, z). The evidence lower bound
optimization (ELBO) approximates the posterior p(z|y) by a distribution ¢(z|A) that maximizes a
lower bound to the marginal likelihood as shown below:

logp(y) = o [ a(alN)” ((y 23 da > (B logp(y.2)] ~ By loga(alA]} . ()

Here, A is the set of variational parameters. We denote the term inside the max by L(A).

2 Proximal-Gradient Stochastic Variational Inference

In this paper, we propose a method to address the three issues discussed in the previous section:
(1) exploiting the structure of the lower bound, (2) exploiting the geometry of the posterior, and (3)
setting the step-size using the structure and geometry.

Composite structure of the lower bound: A function can always be expressed as the sum of
convex and non-convex ‘parts’. For the variational lower bound, such splits naturally occur. This
is due to the presence of the second term of (I)), which is the entropy of ¢. For the negative of the
variational lower bound we denote convex part by i and non-convex part by f, as shown below:
—L(A) := f(X) + h(X). For example, for a conditionally-conjugate exponential family (using the
notation of [[14]), the second term is convex in the lower bound shown below:

—L(A) = (A7 = A)T 7 Ai(A) + Ai(N), 2)

where A7 is the mean-field update for the variational parameter \; of ¢(z;|\;), the i’th latent vari-
able in a Bayesian network, and A; is the partition function of the exponential family (see Appendix
A.1 and A.2 in [14] for details).

Geometry of the posterior ¢(z|A): The geometry of the posterior distribution can be incorporated
using divergence measures. We will denote the divergence between two distributions g(z|A) and
q(z|\") by D(X, X'). For exponential family distributions, there are natural alternatives to using the
squared Euclidean distance. For example, the KL divergence which is defined as:

D (q(zI) [ a(z|A)) = AN) = A(X) = VAR (X' = X). 3)

The so-called ‘Bregman’ divergence defines another class of divergence functions. For expo-
nential family distributions, it is equal to the KL divergence with swapped natural parameters:
Dpreg(N'[[A) = Dgp (A||A). Finally, the symmetric-KL divergence D3?;" (A||A) used in SVI



is equal to the sum of the KL divergence and the ‘Bregman’ divergence for exponential family dis-
ributions. Note that we get back the standard prox operator if we use the Euclidean distance instead
of a divergence function. Thus, introducing a divergence function can be viewed as using a different
prox operator.

Stochastic-Approximation: We compute a stochastic approximation to the gradient of the non-
convex f(\), denoting this approximation by g(Ag, &;,) where Ay is X at the k’th iteration and &, is
arandom variable that represents the noise in the approximation. We assume that the approximation
is unbiased and has a bounded variance,

Al E[g(Ar &)l =vf( ), A2 E[||g(Ar &) — V()] < 02, (4)

where o > 0 is a constant. We also assume (A3) that the gradient of f is L-Lipschitz continuous for
any Aand X’ € S.

This notation contains the doubly-stochastic approximation [4] as a special case. In particular, we
may have stochasticity due to the mini-batch selection and also stochasticity due to the Monte-Carlo
(MC) approximation to the intractable expectations with respect to ¢. The latter can be approximated
using samples from q. In particular, for our approach we assume a mini-batch size of Mj,. For the ith
data example, we compute average gradient approximations to get an approximation to the gradient:

A~ M ~
&, = 1= L s ).

Our algorithm: Our proximal-gradient stochastic variational inference (PG-SVI) starts with a value
Ao and uses the following update at every iteration k using the gradient g, and divergence D(A||Ag):

Apt1 = argmlﬂ ATgy + h(A) + —D(X | Ar) (5)

Bk

Convergence: Our convergence results suggest that the algorithm can converge even with a constant
step-size. Our proof techniques are based on the work of [[15]], but we need to assume that there exist
a scalar « > 0 such that for every subproblem (3},

Adl (Apg1 = AT 71 Dgr1 | AR) = ol A1 — e, (6)

where \/; denotes the gradient of the first argument. But this condition only needs to hold at the
solution of the subproblem. The following theorem gives us a bound on || Ag+1 — Ak

Theorem 1. (Convergence of PG-SVI) Ler o be the constant such that A4 is satisfied. Define
ax = a — 1/(2¢) where c is a constant such that ¢ > 1/(2a). Now, let k = 1,2,..., K where K
is the total number of iterations, and let By, be such that 0 < By < 2. /L with By, < 2. /L for
at least one k. Suppose that we sample a discrete random variable R € {1,2,..., K} using the
probability mass function

S (B — LB2/2)

Then, under assumption (Al1-A4), we have the following result (where L™ is the maximum):

L= L) + Leoa® S5 (Be/My)
—IE Ap— A
6 (H R R— IH ) 2521 (a*ﬂk . %Lﬁﬁ)

Pgr(k) :== Prob(R =k) =

)

The bound depends on the noise variance o2, mini-batch size M, Lipschitz constant L, constant

« for Assumption A4, step-size i, and the gap between the maximum and the starting point £* —
L(Ao). In addition, a constant ¢ needs to be chosen such that ¢ > 1/(2«). When the step-size and
mini-batch size are held constant, we get the following corollary:

Corollary 1. (Convergence under a constant step-size) Let 3, = «. / L and My = M > 1 for all
k, then E(||Ar — Ar—1|?)/Br is bounded by, 2% [L* — L(A”)] +

Ma

We see that the bound gets tighter as the mini-batch size M and number of iterations K are increased,
as expected. It also shows that the bound gets tighter as «, is increased, establishing the usefulness
of adding the divergence in our update. We also see a trade-off between the term depending on

the Lipschitz constant L and the term depending on the variance o2. Most important of all, the
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Figure 1: We show results for binary Gaussian process classification, using the setup of [16]. We compare our
approach PG-SVI with SGD, ADADELTA, RMSprop [17], ADAGRAD [12], and SMORMS3 [18]] on three
datasets: sonar, ionosphere, and USPS-3vs5. Each column shows results for a dataset. The top row shows the
negative of the lower bound, while the bottom row shows the test log-loss. In each plot, the x-axis shows the
number of passes made through the data. Our method always converges within 10 passes through the data,
while other methods take around 100 to 1000 passes. All the methods are compared within the GPML toolbox.
We use a fixed mini-batch size M of 5, 5, and 20 respectively for the three datasets. The number of MC samples
are set to 2000, 500, and 2000 respectively. For SGD, we use a schedule set according to (1 4+ k)™ with 7 set
to 0.80, 0.51 and 0.6 respectively. For ADADELTA, RMSprop, and ADAGRAD, we set ¢ = 1078, while for
SMORMS3 we set it to 1076, For these four methods, we choose the initial learning rate as follows: for
ADADELTA we set it to 1.0, 0.1, and 1.0 respectively; for RMSprop we set it to 0.1, 0.04, and 0.1 respectively;
for ADAGRAD we set it to 4.5, 4, and 8 respectively; for SMORMS3 we set it to 5, 5, and 5 respectively.
For ADADELTA, we set the decay factor to 1 — 5 * 10719 1 — 107! and 1 — 1072 respectively, and for
RMSprop, we set it to 0.9, 0.9999, and 0.9 respectively. Finally, for PG-SVI, we set 5 to 0.2,2.0, and 2.5
respectively. For the Gaussian processes, we use a mean function of zero a and squared-exponential covariance
function. The hyperparameters were set to values that maximize the marginal-likelihood as suggested in [16].

corollary establishes the convergence of our algorithm under a constant step-size, which depends on
the Lipschitz constant and the geometry of the posterior .Ghadimi et. al. discuss some strategies in
[L5] for tightening the second term by adapting the mini-batch size.

Existing methods as special cases: Many existing methods can be seen as special cases of our
framework. Suppose that ¢ is an exponential family distribution. When D is the Euclidean distance,
we recover gradient descent updates. SVI can be obtained as a special case by setting h = 0
and the divergence function to (A — Ax)T 72 A(Ax)(A — A). Methods based on the ‘Bregman’
divergence and KL divergence (e.g. [19} 20l 21} 22} 23]]) are also special cases. For most of these
methods, assumptions Al, A2, and A3 hold. A sufficient condition for Assumption A4 to hold is
the strong-convexity of A(\), but our convergence results apply when the eigenvalues of A(\) are
lower bounded at all A, that are solutions of subproblem of (3).

The parameter o:: The parameter o can be shown to exist for many interesting distributions and
problems. For example, Bernoulli and Multinomial distribution have o = 1. For variational Gaus-
sian approximations to latent-Gaussian models, o can be found using a lower bound on the eigen-
values of the prior covariance matrix for the Gaussian latent variable.
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