

1. Introduction to Gaussian Process Classification (GPC)

2. Expectation Propagation (EP) for Large Scale GPC

$$\overline{\mathbf{X}} = (\overline{\mathbf{x}}_1, \dots, \overline{\mathbf{x}}_m)^{\mathrm{T}}, \qquad \overline{\mathbf{f}} = (f(\overline{\mathbf{x}}_1), \dots, f(\overline{\mathbf{x}}_n))^{\mathrm{T}}.$$
Let $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^{\mathrm{T}}.$ The **posterior** for $\overline{\mathbf{f}}$ is:

$$p(\overline{\mathbf{f}}|\mathbf{y}) = \frac{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\overline{\mathbf{f}})p(\overline{\mathbf{f}})d\overline{\mathbf{f}}}{p(\mathbf{y})} = \frac{\prod_{i=1}^n \phi_i(\overline{\mathbf{f}})p(\overline{\mathbf{f}})}{p(\mathbf{y})}$$

with $m_i = \mathbf{K}_{f_i,\bar{\mathbf{f}}} \mathbf{K}_{\bar{\mathbf{f}},\bar{\mathbf{f}}}^{-1} \bar{\mathbf{f}}$, $s_i = \mathbf{K}_{f_i,f_i} - \mathbf{K}_{f_i,\bar{\mathbf{f}}} \mathbf{K}_{\bar{\mathbf{f}},\bar{\mathbf{f}}}^{-1} \mathbf{K}_{\bar{\mathbf{f}},f_i}$.

$$p(\bar{\mathbf{f}}|\mathbf{y}) \approx q(\bar{\mathbf{f}}) = \frac{\prod_{i=1}^{n} \phi_i(\mathbf{f}) p(\mathbf{f})}{Z_q}, \quad \tilde{\phi}_i = \arg\min \operatorname{KL}(q)$$

where
$$\tilde{\phi}_i(\bar{\mathbf{f}}) = \tilde{s}_i \exp\left\{-0.5\tilde{\nu}_i \bar{\mathbf{f}}^{\mathrm{T}} \upsilon_i \upsilon_i^{\mathrm{T}} \bar{\mathbf{f}} + \tilde{\mu}_i \bar{\mathbf{f}}^{\mathrm{T}} \upsilon_i\right\}$$
 and $\upsilon_i = \mathbf{F}$

$$\frac{\partial \operatorname{rr}}{\partial i} + \sum_{i=1}^{n} \frac{\partial \log Z_i}{\partial \xi_j}$$

5. Experimental Results

Avg. Negative test log likelihood and training time in seconds.						
	m = 15%			m = 50%		
Problem	ADF	EP	SEP	ADF	EP	SEP
Australian	$.70 \pm .07$	$.69\pm.07$	$\textbf{.63} \pm \textbf{.05}$	$.67 \pm .06$	$.64 \pm .05$	$\textbf{.63} \pm \textbf{.05}$
Breast	$.12 \pm .06$	$.11 \pm .05$	$.11 \pm .05$	$.12 \pm .05$	$\textbf{.11} \pm \textbf{.05}$	$.11 \pm .06$
Crabs	$.08 \pm .06$	$.06~\pm~.06$	$\textbf{.06}~\pm~\textbf{.07}$	$.08 \pm .06$	$.06~\pm~.06$	$\textbf{.06}~\pm~\textbf{.07}$
Heart	$.45 \pm .18$	$.40 \pm .13$	$\textbf{.39} \pm \textbf{.11}$	$.46 \pm .17$.41 \pm .11	$.40~\pm~.12$
Ionosphere	$.29 \pm .18$	$.26 \pm .19$	$.28 \pm .16$	$.33 \pm .19$	$.27 \pm .19$	$.27 \pm .17$
Pima	$.52 \pm .07$	$.52 \pm .07$	$.49 \pm .05$	$.62 \pm .09$	$.50 \pm .05$	$\textbf{.49} \pm \textbf{.05}$
Sonar	$.40 \pm .15$	$\textbf{.33} \pm \textbf{.10}$	$.35 \pm .11$	$.46 \pm .24$	$\textbf{.29} \pm \textbf{.09}$	$.33 \pm .12$
Avg. Time	18.2 ± 0.3	$19.3{\scriptstyle\pm}~0.5$	18.8 ± 0.1	145 ± 4.0	136 ± 3.0	149 ± 1.0

6. Conclusions

Number of training instances: MNIST 60,000 and Airline 2,127,068.

Why does ADF perform similar to SEP now? MNIST: odd vs even digits

Stochastic expectation propagation (SEP) can be used as a practical alternative to expectation propagation (EP) for training Gaussian Process Classifiers on small and large datasets. SEP reduces the memory cost from O(nm) to $\mathcal{O}(m^2)$, which is very good if $n \gg m$. ► ADF also provides similar results to expectation propagation, but only when the model is simple (small *m*), or when the number of training instances is very large (large *n*).