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Yingzhen Li3, Thang Bui3 and Richard E. Turner3

1Universidad Autónoma de Madrid. 2Harvard University. 3University of Cambridge.

1. Introduction to Gaussian Process Classification (GPC)

Description: We assume p(yi|xi, f) = Φ(yif(xi)), where Φ(·) is a probit
function, yi ∈ {−1, 1}, and f is generated from a Gaussian process, i.e.,
f(xi) ∼ GP(0, k(xi, ·)), for some covariance function k(xi, ·). Training
costsO(n3) since approximating p(f|y,X) involves the inverse of a n× n
matrix. Hyper-parameters are learnt via type-II maximum likelihood.

Non-parametric classifier that becomes more expressive as n grows!

2. Expectation Propagation (EP) for Large Scale GPC

Description: Inducing point representation in which the targets of the m
inducing points are not marginalized. Allows for very efficient training!

X = (x1, . . . , xm)T , f = (f(x1), . . . , f(xm))T ,

Let f = (f(x1), . . . , f(xn))
T. The posterior for f is:

p(f|y) =

∫
p(y|f)p(f|f)p(f)df

p(y)
=

∏n
i=1φi(f)p(f)

p(y)
,

where we have used p(f|f) ≈
∏n

i=1 p(fi|f) and φi(f) = Φ(yimi/
√

si + 1),
with mi = Kfi,fK

−1
f,f f, si = Kfi,fi − Kfi,fK

−1
f,f Kf,fi,

.

The posterior is approximated using Expectation Propagation:

p(f|y) ≈ q(f) =

∏n
i=1 φ̃i(f)p(f)

Zq
, φ̃i = arg min KL(φiq\i|φ̃iq\i) ,

where φ̃i(f) = s̃i exp
{
−0.5ν̃if

T
υiυ

T
i f + µ̃if

T
υi

}
and υi = Kfi,fK

−1
f,f .

3. Learning the Hyper-parameters in Expectation Propagation

The gradient of log of the marginal likelihood estimate Zq is:

∂ log Zq

∂ξj
= ηT∂θprior

∂ξj
− ηT

prior

∂θprior

∂ξj
+

n∑
i=1

∂ log Zi

∂ξj
,

where Zi is the normalization constant of φiq\i ∝ φiq/φ̃i, η and ηprior are
expected sufficient statistics, and θ and θprior are natural parameters.

We can use a minibatch of data to refine the corresponding φ̃i and update q,
and stochastic gradients to maximize Zq w.r.t the hyper-parameters ξ !

Training costsO(m3) but memory resources scale likeO(nm) !

4. Stochastic Expectation Propagation (SEP)

Reduces the memory cost of EP by a factor of n. SEP uses a single global
factor φ̃ =

∏n
i=1 φ̃i to approximate the likelihood, where φ̃i = (

∏n
i=1 φ̃i)

1
n.

Algorithm: Parallel EP - Batch Mode
1: For each approximate factor φ̃i to update:
1.1: Compute cavity: q\i(f) ∝ q(f)/φ̃i(f)
1.2: Update φ̃i: φ̃i = proj(φi)

2: Reconstruct q: q(f) ∝
∏n

i=1 φ̃i(f)p(f|X)

Algorithm: Parallel ADF - Batch Mode
1: Set q(f) equal to the prior p(f|X).
2: For each exact factor φi to incorporate:
2.1: Compute cavity: q\i(f) = q(f)
2.2: Find φ̃i: φ̃i = proj(φi)

2.3: Update q: q(f) ∝ φ̃i(f)q(f)

Algorithm: Parallel SEP - Batch Mode
1: Set the global factor φ̃new uniform.
2: For each exact factor φi to incorporate:
2.1: Compute cavity: q\i(f) ∝ q(f)/φ̃(f)

1
n

2.2: Find φ̃i: φ̃i = proj(φi)

2.3: Accumulate: φ̃new(f) = φ̃new(f)φ̃i(f)
3: Reconstruct q: q(f) ∝ φ̃new(f)p(f|X)

In SEP all the approximate factors
are the same and hence we only need
to storeO(m2) parameters in total.

The update of the hyper-parameters is as in EP, but we have to consider the
form of the cavity, i.e., q\i ∝ q/φ̃

1
n, which is the same for each factor φi!

5. Experimental Results

Avg. Negative test log likelihood and training time in seconds.
m = 15% m = 50%

Problem ADF EP SEP ADF EP SEP
Australian .70 ±.07 .69 ± .07 .63 ± .05 .67±.06 .64 ± .05 .63 ± .05
Breast .12 ±.06 .11 ± .05 .11 ± .05 .12±.05 .11 ± .05 .11 ± .06
Crabs .08 ±.06 .06 ± .06 .06 ± .07 .08±.06 .06 ± .06 .06 ± .07
Heart .45 ±.18 .40 ± .13 .39 ± .11 .46±.17 .41 ± .11 .40 ± .12
Ionosphere .29 ±.18 .26 ± .19 .28 ± .16 .33±.19 .27 ± .19 .27 ± .17
Pima .52 ±.07 .52 ± .07 .49 ± .05 .62±.09 .50 ± .05 .49 ± .05
Sonar .40 ±.15 .33 ± .10 .35 ± .11 .46±.24 .29 ± .09 .33 ± .12
Avg. Time 18.2±0.3 19.3± 0.5 18.8± 0.1 145±4.0 136± 3.0 149± 1.0

Number of training instances: MNIST 60,000 and Airline 2,127,068.

Why does ADF perform similar to SEP now?

6. Conclusions

I Stochastic expectation propagation (SEP) can be used as a practical alternative to expecta-
tion propagation (EP) for training Gaussian Process Classifiers on small and large datasets.

I SEP reduces the memory cost from O(nm) toO(m2), which is very good if n� m.
I ADF also provides similar results to expectation propagation, but only when the model is

simple (small m), or when the number of training instances is very large (large n).
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