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Avg. Negative test log likelihood and training time in seconds.

Description: We assume p(y;|x;, f) = ®(yif (x;)), where ®(-) is a probit The gradient of log of the marginal likelihood estimate Z, is:
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Why does ADF perform similar to SEP now?
MNIST: odd vs even digits

Non-parametric classifier that becomes more expressive as n grows!

Reduces the memory cost of EP by a factor of n. SEP uses a single global
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1:  Set g(f) equal to the prior p(f]|X).

For each exact factor ¢; to incorporate:
2.1: Compute cavity: gV (f) = ¢(f)

2.2: Find &il Qgi — prOj(qb,-)

2.3: Update ¢q: ¢(F) o ¢i(f)q(F)
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p(y)
where we have used p(f ) = [[_,p(filf) and ¢;(f) = ®(ysm;//si + 1), | 2:
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In SEP all the approximate factors
are the same and hence we only need
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The posterior 1s approximated using Expectation Propagation:
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where &,(f) — §i exXp {—O.SﬁifT’Ui’U;F f -+ ﬁifT’Ui} and V; = Kf,-,f'Kf— fl.

to store O (m?*) parameters in total.

» Stochastic expectation propagation (SEP) can be used as a practical alternative to expecta-
tion propagation (EP) for training Gaussian Process Classifiers on small and large datasets.

» SEP reduces the memory cost from O(nm) to O (m?*), which is very good if n >> m.

» ADF also provides similar results to expectation propagation, but only when the model 1s
simple (small m), or when the number of training instances 1s very large (large n).

The update of the hyper-parameters 1s as in EP, but we have to consider the

form of the cavity, i.e., ¢V ¢ / qﬁ, which 1s the same for each factor ;!
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