Black-box α -divergence minimization

José Miguel Hernández-Lobato¹, Yingzhen Li,², Daniel Hernández-Lobato³, Thang Bui², Richard E. Turner²

The α divergence between two distributions p and q is defined as [Amari (1985)]

$$D_{\alpha}(p||q) = \frac{\int_{x} \alpha p(x) + (1-\alpha)q(x) + p(x)^{\alpha}q(x)^{1-\alpha}}{\alpha(1-\alpha)}$$

Figure source: [Minka (2005)].

- ullet There are black-box and automatic methods for Variational Bayes (lpha=0).
- These are based on stochastic optimization and automatic differentiation approaches.
- ullet Can we obtain similar methods for any lpha?

2 - Local α -divergence minimization (Power EP)

We approximate $p(\theta) \propto p_0(\theta) \prod_{i=1}^N f_n(\theta)$ with $q(\theta) = p_0(\theta) \prod_{n=1}^N \tilde{f}_n(\theta)$.

$$p(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) f_1(\boldsymbol{\theta}) f_2(\boldsymbol{\theta}) f_3(\boldsymbol{\theta}) \approx q(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) \tilde{f}_1(\boldsymbol{\theta}) \tilde{f}_2(\boldsymbol{\theta}) \tilde{f}_3(\boldsymbol{\theta})$$

The Power-EP approximation to the evidence [Minka, 2005] is given by

$$\log Z_{\mathsf{PEP}} = \log Z_q + \sum_{n=1}^{\mathcal{N}} rac{1}{lpha_n} \log \mathbb{E}_q \left[\left(rac{f_n(oldsymbol{ heta})}{\widetilde{f}_n(oldsymbol{ heta})}
ight)^{lpha_n}
ight] \; ,$$

where $Z_q = \int p_0(\boldsymbol{\theta}) \prod_{n=1}^N \tilde{f}_n(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$.

The power-EP solution for q can be obtained by solving the optimization problem

$$\max_{q} \min_{ ilde{f}_1,..., ilde{f}_N} \log Z_{\mathsf{PEP}}$$
 subject to $q(m{ heta}) = p_0(m{ heta}) \prod_{n=1}^N ilde{f}_n(m{ heta})\,,$

- Can be solved with a double-loop algorithm [Heskes et al. (2002)].
- At convergence, the local α -divergences are minimized.
- Convergence is too slow to be useful in practice!

Optimization with tied approximate factors

By following [Li et al. (2015)]:

No double-loop needed. Memory saving scales as $\mathcal{O}(N)$.

Stochastic estimate of the evidence for automatic, scalable inference:

$$\log \hat{Z}_{\mathsf{PEP}} = \log Z_q + \frac{\mathsf{N}}{|\mathbf{S}|} \sum_{n \in \mathbf{S}} \frac{1}{\alpha_n} \log \frac{1}{\mathsf{K}} \sum_{k=1}^{\mathsf{K}} \left(\frac{f_n(\boldsymbol{\theta}_k)}{\tilde{f}(\boldsymbol{\theta}_k)} \right)^{\alpha_n}$$

for minibatch **S** and *K* samples $\theta_1, \ldots, \theta_K \sim q$.

Stationary conditions for tied and non-tied factors when lpha=1 (EP)

• With non-tied factors:

We get the well-known matching of expected sufficient statistics:

$$\mathsf{f E}_q[s(oldsymbol{ heta})] = \mathsf{f E}_{f_n q^{\setminus n}}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots, {oldsymbol{N}} \,,$$

where $f_n q^{\setminus n} \propto p_0(\theta) f_n(\theta) \prod_{k \neq n}^N \tilde{f}_k(\theta)$ is called the *n*-th tilted distribution and $s(\theta)$ are the sufficient statistics.

• With tied factors:

The expectation of $s(\theta)$ with respect to q are equal to the average of the expectations of $s(\theta)$ over the tilted distributions:

$$\mathsf{f E}_q[s(oldsymbol{ heta})] = rac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \mathsf{f E}_{f_n q^{\setminus n}}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots,\mathcal{N} \,,$$

With a lot of data, the solution with tied factors is expected to converge to the solution with non-tied factors.

Stationary conditions for the prior hyper-parameters

The Z_{PEP} is maximized with respect to the prior hyper-parameters when

$$\mathsf{E}_q[s(oldsymbol{ heta})] = \mathsf{E}_{p_0}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots, \mathsf{N} \,,$$

Experiments and results

Stochastic optimization with minibatch size 100 and K=100. q is factorized Gaussian.

We use autograd for automatic gradient computation.

Bayesian probit regression:

Table: Average Test Log-likelihood and Standard Errors, Probit Regression.

Dataset	WB - α =1.0	BB- α =1.0	BB- $lpha$ = 10^{-6}	BB-VB
Ionosphere	-0.3211 ± 0.0134	-0.3206 ± 0.0134	-0.3204 ± 0.0134	-0.3204 ± 0.0134
Madelon	-0.6771 ± 0.0021	-0.6764 ± 0.0019	-0.6763 ± 0.0012	-0.6763 ± 0.0012
Pima	$\textbf{-0.4993} \!\pm\! 0.0098$	-0.4997 ± 0.0099	-0.5001 ± 0.0099	-0.5001 ± 0.0099
Avg. Rank	2.5510 ± 0.1110	2.3810 ± 0.0854	2.5170 ± 0.0967	2.5510 ± 0.0717

Bayesian neural networks with 100 hidden units and one single hidden layer:

We tune α , learning rates and prior variance with Bayesian optimization.

Table: Average Test Log-likelihood and Standard Errors, Neural Networks.

Datas	set BB- α =BO	BB- α =1	BB- $lpha$ =10 ⁻⁶	BB-VB	Avg. α
Boston	$-2.549{\pm}0.019$	-2.621 ± 0.041	-2.614 ± 0.021	-2.578 ± 0.017	0.45 ± 0.04
Concre	ete -3.104 \pm 0.015	-3.126 ± 0.018	-3.119 ± 0.010	-3.118 ± 0.010	0.72 ± 0.03
Energy	-0.979 ± 0.028	-1.020 ± 0.045	-0.945 ± 0.012	$2-0.994\pm0.014$	0.72 ± 0.03
Wine	-0.949 ± 0.009	$-0.945{\pm}0.008$	-0.967 ± 0.008	-0.964 ± 0.007	0.86 ± 0.04
Yacht	$-1.102{\pm}0.039$	-2.091 ± 0.067	-1.594 ± 0.016	-1.646 ± 0.017	$0.48\pm\!0.01$
Avg.	Rank 1.835 ± 0.065	2.504 ± 0.080	2.766 ± 0.061	2.895 ± 0.057	

Conclusions

- By using tied factors, we avoid double loop algorithms in Power-EP.
- The approximation of the evidence can then be optimized using **stochastic methods**. These can be combined with **automatic differentiation tools**.
- By doing so, we enable black-box automatic α -divergence minimization.
- **Tuning** α seems to produce gains in complex posterior distributions such as those in Bayesian neural networks.

Future work

- Bayesian neural networks for classification. Experiments on MNIST.
- How to tune each α_n optimally to its corresponding exact factor f_n ?
- Analysis of the amount of bias and variance in the stochastic gradients.

References

Amari, S. *Differential-geometrical methods in statistics*, volume 28. Springer Science & Business Media, 1985.

Heskes et al. Expectation propagation for approximate inference in dynamic bayesian networks. In *UAI 18*, 2002

Kucukelbir, Alp, Ranganath, Rajesh, Gelman, Andrew, and Blei, David. Automatic variational inference in stan. In *NIPS 28*, pp. 568–576. 2015.

Li, Yingzhen, Hernández-Lobato, José Miguel, and Turner, Richard E. Stochastic expectation propagation. In *NIPS 28*. 2015.

Minka, Tom. Divergence measures and message passing. Technical report, Microsoft Research, 2005.