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1 - Minimizing α-divergences

The α divergence between two distributions p and q is defined as [Amari (1985)]

Dα(p||q) =

∫
x αp(x) + (1− α)q(x) + p(x)αq(x)1−α

α(1− α)
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Figure source: [Minka (2005)].

•There are black-box and automatic methods for Variational Bayes (α = 0).

•These are based on stochastic optimization and automatic differentiation approaches.

• Can we obtain similar methods for any α?

2 - Local α-divergence minimization (Power EP)

We approximate p(θ) ∝ p0(θ)
∏N

i=1 fn(θ) with q(θ) = p0(θ)
∏N

n=1 f̃n(θ) .

The Power-EP approximation to the evidence [Minka, 2005] is given by

log ZPEP = log Zq +
N∑

n=1

1

αn
logEq

[(
fn(θ)

f̃n(θ)

)αn
]
,

where Zq =
∫

p0(θ)
∏N

n=1 f̃n(θ) dθ.

The power-EP solution for q can be obtained by solving the optimization problem

max
q

min
f̃1,...,f̃N

log ZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) ,

• Can be solved with a double-loop algorithm [Heskes et al. (2002)].

•At convergence, the local α-divergences are minimized.

• Convergence is too slow to be useful in practice!

Optimization with tied approximate factors

By following [Li et al. (2015)]:

We tie the factor 
approximations

No double-loop needed. Memory saving scales as O(N).

Stochastic estimate of the evidence for automatic, scalable inference:

log ẐPEP = log Zq +
N

|S|
∑
n∈S

1

αn
log
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K∑
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(
fn(θk)

f̃ (θk)

)αn

,

for minibatch S and K samples θ1, . . . ,θK ∼ q.

Stationary conditions for tied and non-tied factors when α = 1 (EP)

•With non-tied factors:

We get the well-known matching of expected sufficient statistics:

Eq[s(θ)] = Efnq\n[s(θ)] , for n = 1, . . . ,N ,

where fnq\n ∝ p0(θ)fn(θ)
∏N

k 6=n f̃k(θ) is called the n-th tilted distribution and
s(θ) are the sufficient statistics.

•With tied factors:

The expectation of s(θ) with respect to q are equal to the average of the
expectations of s(θ) over the tilted distributions:

Eq[s(θ)] =
1

N

N∑
n=1

Efnq\n[s(θ)] , for n = 1, . . . ,N ,

With a lot of data, the solution with tied factors is expected to converge to the solution
with non-tied factors.

Stationary conditions for the prior hyper-parameters

The ZPEP is maximized with respect to the prior hyper-parameters when

Eq[s(θ)] = Ep0[s(θ)] , for n = 1, . . . ,N ,

Experiments and results

Stochastic optimization with minibatch size 100 and K = 100. q is factorized Gaussian.

We use autograd for automatic gradient computation.

Bayesian probit regression:

Table : Average Test Log-likelihood and Standard Errors, Probit Regression.

Dataset WB-α=1.0 BB-α=1.0 BB-α=10−6 BB-VB
Ionosphere -0.3211±0.0134 -0.3206±0.0134 -0.3204±0.0134 -0.3204±0.0134
Madelon -0.6771±0.0021 -0.6764±0.0019 -0.6763±0.0012 -0.6763±0.0012
Pima -0.4993±0.0098 -0.4997±0.0099 -0.5001±0.0099 -0.5001±0.0099
Avg. Rank 2.5510±0.1110 2.3810 ±0.0854 2.5170±0.0967 2.5510±0.0717

Bayesian neural networks with 100 hidden units and one single hidden layer:

We tune α, learning rates and prior variance with Bayesian optimization.

Table : Average Test Log-likelihood and Standard Errors, Neural Networks.

Dataset BB-α=BO BB-α=1 BB-α=10−6 BB-VB Avg. α
Boston -2.549±0.019 -2.621±0.041 -2.614±0.021 -2.578±0.017 0.45±0.04
Concrete -3.104±0.015 -3.126±0.018 -3.119±0.010 -3.118±0.010 0.72±0.03
Energy -0.979±0.028 -1.020±0.045 -0.945±0.012 -0.994±0.014 0.72±0.03
Wine -0.949±0.009 -0.945±0.008 -0.967±0.008 -0.964±0.007 0.86±0.04
Yacht -1.102±0.039 -2.091±0.067 -1.594±0.016 -1.646±0.017 0.48±0.01
Avg. Rank 1.835 ±0.065 2.504±0.080 2.766±0.061 2.895±0.057

Conclusions

•By using tied factors, we avoid double loop algorithms in Power-EP.

•The approximation of the evidence can then be optimized using stochastic
methods. These can be combined with automatic differentiation tools.

•By doing so, we enable black-box automatic α-divergence minimization.

•Tuning α seems to produce gains in complex posterior distributions such as those in
Bayesian neural networks.

Future work

•Bayesian neural networks for classification. Experiments on MNIST.

•How to tune each αn optimally to its corresponding exact factor fn?

•Analysis of the amount of bias and variance in the stochastic gradients.
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