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1 - Minimizing a-divergences Optimization with tied approximate factors Experiments and results
The « divergence between two distributions p and g is defined as [Amari (1985)] By following [Li et al. (2015)]: Stochastic optimization with minibatch size 100 and K = 100. q is factorized Gaussian.
p(0) < po(0)  F1(6) f2(6) fs(6) 00) < po(0) fi(6) f2(8) fs(6) We use autograd for automatic gradient computation.
AR H Bayesian probit regression:
We tie the factor o | |
approximations * * * Table : Average Test Log-likelihood and Standard Errors, Probit Regression.
) Dataset WB-a=1.0 BB-a=1.0 BB-a=10""° BB-VB
p(0) < po(0) f1(0) f2(0) f3(0) q(0) < po(0) f(er lonosphere  -0.321140.0134 -0.32064-0.0134 -0.3204--0.0134 -0.3204--0.0134
2B ~ Madelon ~ -0.67714+0.0021 -0.6764+0.0019 -0.676340.0012 -0.6763-0.0012
Pima -0.4993+0.0098 -0.4997+0.0099 -0.5001+0.0099 -0.500140.0099
Avg. Rank 2.55104+0.1110 2.3810 +0.0854 2.5170+0.0967 2.551040.0717
o = —00 a =10 a = 0.5 No double-loop needed. Memory saving scales as O(N). ve. Tl
q
{ . KL(q || p) VB Stochastic estimate of the evidence for automatic, scalable inference: Bayesian neural networks with 100 hidden units and one single hidden layer:

We tune «, learning rates and prior variance with Bayesian optimization.

Table : Average Test Log-likelihood and Standard Errors, Neural Networks.

a—=1 o = 00

o Dataset BB-a=BO BB-a=1 BB-a=10"° BB-VB Avg. o
KL(plla) EP for minibatch S and K samples 0y,..., 0k ~ g. Boston  -2.540+0.019 -2.621+0.041 -2.614-0.021 -2.5780.017 0.45+0.04
| | Concrete  -3.104+0.015 -3.1264+0.018 -3.11940.010 -3.118--0.010 0.724-0.03
Figure source: [Minka (2005)]. Energy -0.979--0.028  -1.020--0.045 -0.945--0.012-0.994--0.014 0.72+0.03
. » . . Wine -0.949+0.009 -0.945-+-0.008 -0.967--0.008 -0.964--0.007 0.86 --0.04
» There are black-box and automatic methods for Variational Bayes (a = 0). Stationary conditions for tied and non-tied factors when a = 1 (EP) Yacht -1.102+0.039 -2.09140.067 -1.59440.016 -1.646--0.017 0.48+0.01

» T hese are based on stochastic optimization and automatic differentiation approaches. Avg. Rank1.835 +0.065 2.504+0.080 2.766+0.061 2.895+0.057

e With non-tied factors:

o Can we obtain similar methods for any o

We get the well-known matching of expected sufficient statistics:

Conclusions

2 - Local a-divergence minimization (Power EP)

» By using tied factors, we avoid double loop algorithms in Power-EP.
o The approximation of the evidence can then be optimized using stochastic

We approximate p(8) o po(0) [T, £(0) with q(8) = po(8) [T, 7,(0). where f,g\" o< po(8)f,(6) Hz;n f(0) is called the n-th tilted distribution and methods. These can be combined with automatic differentiation tools.
s(0) are the sufficient statistics. » By doing so, we enable black-box automatic a-divergence minimization.
p(0) x  po(@) f1(0) f2(0) f3(0) q(0) < po(0) f1(0) f2(0) f3(0) « With tied factors: e Tuning a seems to produce gains in complex posterior distributions such as those in
%%m ~ _ _ Bayesian neural networks.
The expectation of s(0) with respect to g are equal to the average of the

expectations of s(@) over the tilted distributions:
The Power-EP approximation to the evidence [Minka, 2005] is given by

N i QnT
1 fa(0)
log Zpep = log Z, + E —log & (,., ) :
’ n=1 & ’ _ fn(e) _

Future work

» Bayesian neural networks for classification. Experiments on MNIST.

e How to tune each o, optimally to its corresponding exact factor f,?
» Analysis of the amount of bias and variance in the stochastic gradients.

With a lot of data, the solution with tied factors is expected to converge to the solution
with non-tied factors.

where Z, = [ po(0) T]\_, .(8) d6.
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