Black-box α -divergence minimization José Miguel Hernández-Lobato¹, Yingzhen Li,², Daniel Hernández-Lobato³, Thang Bui², Richard E. Turner² The α divergence between two distributions p and q is defined as [Amari (1985)] $$D_{\alpha}(p||q) = \frac{\int_{x} \alpha p(x) + (1-\alpha)q(x) + p(x)^{\alpha}q(x)^{1-\alpha}}{\alpha(1-\alpha)}$$ Figure source: [Minka (2005)]. - ullet There are black-box and automatic methods for Variational Bayes (lpha=0). - These are based on stochastic optimization and automatic differentiation approaches. - ullet Can we obtain similar methods for any lpha? ## 2 - Local α -divergence minimization (Power EP) We approximate $p(\theta) \propto p_0(\theta) \prod_{i=1}^N f_n(\theta)$ with $q(\theta) = p_0(\theta) \prod_{n=1}^N \tilde{f}_n(\theta)$. $$p(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) f_1(\boldsymbol{\theta}) f_2(\boldsymbol{\theta}) f_3(\boldsymbol{\theta}) \approx q(\boldsymbol{\theta}) \propto p_0(\boldsymbol{\theta}) \tilde{f}_1(\boldsymbol{\theta}) \tilde{f}_2(\boldsymbol{\theta}) \tilde{f}_3(\boldsymbol{\theta})$$ The Power-EP approximation to the evidence [Minka, 2005] is given by $$\log Z_{\mathsf{PEP}} = \log Z_q + \sum_{n=1}^{\mathcal{N}} rac{1}{lpha_n} \log \mathbb{E}_q \left[\left(rac{f_n(oldsymbol{ heta})}{\widetilde{f}_n(oldsymbol{ heta})} ight)^{lpha_n} ight] \; ,$$ where $Z_q = \int p_0(\boldsymbol{\theta}) \prod_{n=1}^N \tilde{f}_n(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$. The power-EP solution for q can be obtained by solving the optimization problem $$\max_{q} \min_{ ilde{f}_1,..., ilde{f}_N} \log Z_{\mathsf{PEP}}$$ subject to $q(m{ heta}) = p_0(m{ heta}) \prod_{n=1}^N ilde{f}_n(m{ heta})\,,$ - Can be solved with a double-loop algorithm [Heskes et al. (2002)]. - At convergence, the local α -divergences are minimized. - Convergence is too slow to be useful in practice! ## Optimization with tied approximate factors By following [Li et al. (2015)]: No double-loop needed. Memory saving scales as $\mathcal{O}(N)$. Stochastic estimate of the evidence for automatic, scalable inference: $$\log \hat{Z}_{\mathsf{PEP}} = \log Z_q + \frac{\mathsf{N}}{|\mathbf{S}|} \sum_{n \in \mathbf{S}} \frac{1}{\alpha_n} \log \frac{1}{\mathsf{K}} \sum_{k=1}^{\mathsf{K}} \left(\frac{f_n(\boldsymbol{\theta}_k)}{\tilde{f}(\boldsymbol{\theta}_k)} \right)^{\alpha_n}$$ for minibatch **S** and *K* samples $\theta_1, \ldots, \theta_K \sim q$. ## Stationary conditions for tied and non-tied factors when lpha=1 (EP) #### • With non-tied factors: We get the well-known matching of expected sufficient statistics: $$\mathsf{f E}_q[s(oldsymbol{ heta})] = \mathsf{f E}_{f_n q^{\setminus n}}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots, {oldsymbol{N}} \,,$$ where $f_n q^{\setminus n} \propto p_0(\theta) f_n(\theta) \prod_{k \neq n}^N \tilde{f}_k(\theta)$ is called the *n*-th tilted distribution and $s(\theta)$ are the sufficient statistics. #### • With tied factors: The expectation of $s(\theta)$ with respect to q are equal to the average of the expectations of $s(\theta)$ over the tilted distributions: $$\mathsf{f E}_q[s(oldsymbol{ heta})] = rac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} \mathsf{f E}_{f_n q^{\setminus n}}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots,\mathcal{N} \,,$$ With a lot of data, the solution with tied factors is expected to converge to the solution with non-tied factors. ## Stationary conditions for the prior hyper-parameters The Z_{PEP} is maximized with respect to the prior hyper-parameters when $$\mathsf{E}_q[s(oldsymbol{ heta})] = \mathsf{E}_{p_0}[s(oldsymbol{ heta})] \,, \quad ext{for} \quad n=1,\ldots, \mathsf{N} \,,$$ ## Experiments and results Stochastic optimization with minibatch size 100 and K=100. q is factorized Gaussian. We use autograd for automatic gradient computation. ## Bayesian probit regression: Table: Average Test Log-likelihood and Standard Errors, Probit Regression. | Dataset | WB - α =1.0 | BB- α =1.0 | BB- $lpha$ = 10^{-6} | BB-VB | |------------|-----------------------------------|----------------------|------------------------|----------------------| | Ionosphere | -0.3211 ± 0.0134 | -0.3206 ± 0.0134 | -0.3204 ± 0.0134 | -0.3204 ± 0.0134 | | Madelon | -0.6771 ± 0.0021 | -0.6764 ± 0.0019 | -0.6763 ± 0.0012 | -0.6763 ± 0.0012 | | Pima | $\textbf{-0.4993} \!\pm\! 0.0098$ | -0.4997 ± 0.0099 | -0.5001 ± 0.0099 | -0.5001 ± 0.0099 | | Avg. Rank | 2.5510 ± 0.1110 | 2.3810 ± 0.0854 | 2.5170 ± 0.0967 | 2.5510 ± 0.0717 | #### Bayesian neural networks with 100 hidden units and one single hidden layer: We tune α , learning rates and prior variance with Bayesian optimization. Table: Average Test Log-likelihood and Standard Errors, Neural Networks. | Datas | set BB- α =BO | BB- α =1 | BB- $lpha$ =10 ⁻⁶ | BB-VB | Avg. α | |--------|------------------------|--------------------|------------------------------|--------------------|-----------------| | Boston | $-2.549{\pm}0.019$ | -2.621 ± 0.041 | -2.614 ± 0.021 | -2.578 ± 0.017 | 0.45 ± 0.04 | | Concre | ete -3.104 \pm 0.015 | -3.126 ± 0.018 | -3.119 ± 0.010 | -3.118 ± 0.010 | 0.72 ± 0.03 | | Energy | -0.979 ± 0.028 | -1.020 ± 0.045 | -0.945 ± 0.012 | $2-0.994\pm0.014$ | 0.72 ± 0.03 | | Wine | -0.949 ± 0.009 | $-0.945{\pm}0.008$ | -0.967 ± 0.008 | -0.964 ± 0.007 | 0.86 ± 0.04 | | Yacht | $-1.102{\pm}0.039$ | -2.091 ± 0.067 | -1.594 ± 0.016 | -1.646 ± 0.017 | $0.48\pm\!0.01$ | | Avg. | Rank 1.835 ± 0.065 | 2.504 ± 0.080 | 2.766 ± 0.061 | 2.895 ± 0.057 | | ## Conclusions - By using tied factors, we avoid double loop algorithms in Power-EP. - The approximation of the evidence can then be optimized using **stochastic methods**. These can be combined with **automatic differentiation tools**. - By doing so, we enable black-box automatic α -divergence minimization. - **Tuning** α seems to produce gains in complex posterior distributions such as those in Bayesian neural networks. ## Future work - Bayesian neural networks for classification. Experiments on MNIST. - How to tune each α_n optimally to its corresponding exact factor f_n ? - Analysis of the amount of bias and variance in the stochastic gradients. ## References Amari, S. *Differential-geometrical methods in statistics*, volume 28. Springer Science & Business Media, 1985. Heskes et al. Expectation propagation for approximate inference in dynamic bayesian networks. In *UAI 18*, 2002 Kucukelbir, Alp, Ranganath, Rajesh, Gelman, Andrew, and Blei, David. Automatic variational inference in stan. In *NIPS 28*, pp. 568–576. 2015. Li, Yingzhen, Hernández-Lobato, José Miguel, and Turner, Richard E. Stochastic expectation propagation. In *NIPS 28*. 2015. Minka, Tom. Divergence measures and message passing. Technical report, Microsoft Research, 2005.