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Abstract
We presentblack-box alpha(BB-α), an approximate inference method based on
the minimization ofα-divergences between probability distributions. BB-α scales
to large datasets since it can be implemented using stochastic gradient descent.
BB-α can be applied to complex probabilistic models with little effort since it only
requires as input the likelihood function and its gradients. These gradients can be
easily obtained using automatic differentiation. By tuning the parameterα, we
are able to interpolate between variational Bayes and an expectation propagation
like algorithm. Experiments on probit and neural network regression problems
illustrate the accuracy of the posterior approximations obtained with BB-α.

1 Introduction
Probabilistic models are very useful tools to make predictions from data. However, they require
the computation of a posterior distribution which is often intractable. To avoid this, one can use
approximate inference techniques. Two examples are expectation propagation (EP) and variational
Bayes (VB) [1, 2]. These methods adjust the parameters of a tractable distribution so that it is close
to the exact posterior. This is done by finding the stationarypoint of an energy function. In VB this
involves solving a minimization problem. In EP this involves solving amin-maxproblem, which is
more challenging. Both EP and VB are particular cases of local α-divergence minimization, where
α ∈ (−∞,+∞)\{0} is a parameter that specifies the divergence to be minimized [3]. If α = 1, EP
is obtained andα → 0 gives VB [3]. The optimal value forα may be model and/or dataset specific.

The energy function of EP (VB) includes expectations of (thelogarithm of) the likelihood factors
under a tractable distribution. This complicates the use ofEP and VB in complex models for which
there might not exist an analytic solution for these expectations. Monte Carlo sampling has been
proposed to approximate the intractable expectations in VB[4]. This approach is known asblack-
boxVB and it allows VB to be applied to almost any model. Here we propose a similar method for
the more general problem ofα-divergence minimization and call itblack-box alpha. For this, we
simplify the energy function of EP so that themin-maxproblem is transformed into a minimization
problem. This enables the use of stochastic optimization methods for large scale learning. We then
generalize the energy function so that it is based on the local minimization ofα-divergences. Last,
we show that the expectations within the resulting energy function can be approximated via Monte
Carlo. This allows us to apply the resulting method to arbitrary probabilistic models. The difficulty
of gradient computations is avoided by using automatic differentiation tools. The proposed method
can interpolate between VB (α → 0) and an EP-like method (α = 1).

2 The energy function of expectation propagation
Let us assume that we want to use EP to approximate the posterior distributionp(x|D) for some
model parametersx, whereD is a dataset withN data points sampled independently. Then

p(x|D) ∝
[

∏N

n=1
fn(x)

]

p(x) , (1)

where eachfn(x) is a likelihood factor, that is,fn(x) = p(yn|x) whereyn is then-th data instance,
andp(x) is a prior distribution, which we assume to belong to the exponential family, that is,p(x) =
exp{s(x)Tν0−Φ(ν0)}, whereν ands(x) are vectors of natural parameters and sufficient statistics,
respectively, andΦ(ν0) is the logarithm of the normalization constant ofexp{s(x)Tν0}.

We can use EP to approximate the posteriorp(x|D) with a distribution within the same exponential
family as the prior. Letq(x) = exp{s(x)T(ν + ν0)} be the unnormalized posterior approximation
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used by EP. We have used here the parameterization(ν+ν0) to make explicit the contribution of the
prior (given byν0) and likelihood (given byν) in q. EP also uses acavitydistribution with the same
form asq for each likelihood factor. Each cavity distribution approximates the result of removing a
likelihood factor from the true posterior. Letq\n(x) = exp{s(x)T(λn + ν0)} be the unnormalized
cavity distribution that approximates (1) when then-th likelihood factor is removed. Again, we have
used here a parameterization that makes explicit the contribution of the prior to each cavity.

According to [1], the EP energy function is

E(ν, {λn}) = Φ(ν0) + (N − 1) log
∫

q(x)dx −
∑N

n=1
log

∫

fn(x)q
\n(x)dx . (2)

This energy is equal to minus the logarithm of the EP approximation of the model evidencep(D),
that is, the normalizer of the right-hand side of (1) [3]. Therefore, minimizing (2) with respect to
ν and{λn} is arguably a sensible way to tune these variational parameters. In practice, EP finds a
stationary solution to the constrained optimization problem

minν max{λn} E(ν, {λn}) subject to (N − 1)ν =
∑N

n=1
λn , (3)

where the constraint in (3) guarantees that the{λn} are valid cavity parameters. That is, the product
of all the cavities is equal toN−1 times the posterior approximation (leaving the prior factor aside).

By replacingν+ν0 with 1/(N−1)
∑N

n=1
(λn +ν0) in (2) and then taking derivatives with respect

to each{λn}, we obtain the conditions that a solution to (3) must satisfy:

Eq[s(x)] = Efnq\n
[s(x)] , n = 1, . . . , N . (4)

That is, the expectation ofs(x) with respect to the posterior approximationq(x) and with respect to
the product offn(x) andq\n(x), often called thetilted distribution, must be the equal.

The problem in (3) can be solved using a double-loop algorithm [5, 6]. This algorithm alternates
between an optimization of the cavity parameters{λn} in the inner loop and an optimization of the
parameters of the posterior approximation{ν} in the outer loop. Each iteration of the double-loop
algorithm is guaranteed to minimize the energy in (2). However, the alternating optimization of{ν}
and{λn} is very inefficient and the double-loop algorithm often requires too many iterations to be
useful in practice.

2.1 Energy optimization with tied parameters
To simplify the previous optimization problem, we assume that all the cavity parameters are equal
and have a simple form. We assume that eachλn is obtained as a function ofν according to

λn = N−1

N
ν , (5)

which guarantees that the constraint in the right-hand sideof (3) is satisfied. All the cavities are now
the same and are obtained by scalingν in q by (N − 1)/N . This assumption was made in [7] to
obtain a version of EP calledStochastic Expectation Propagationthat has low memory consumption.
Here, we use this assumption to obtain another version of EP that is guaranteed to converge and can
be implemented by optimizing an energy function without requiring a double-loop algorithm. Recall
thatν captures the contribution of the likelihood to the posterior. Thus, with (5) we are assuming
that each factorfn(x) in (1) has an equal contribution to the likelihood and when weremove that
factor, we only have to scaleν by (N − 1)/N .

After replacingλn + ν0 in (2) with the right-hand side of (5) and taking derivativeswith respect to
ν, we obtain the new stationary conditions:

Eq[s(x)] =
1

N

∑N

n=1
Efnq\n

[s(x)] . (6)

Therefore, the expectation ofs(x) with respect toq(x) is going to be equal to the average of the
expectation ofs(x) across the different tilted distributionsfn(x)q\n(x), for n = 1, . . . , N .

The solution that minimizes (2) with respect toν subject to (5) is expected to converge to the
solution of (3) when more and more data are available. AsN grows, we expectq and the cavities
to become very peaked. When this happens, the contribution of each likelihood factorfn(x) to the
tilted distributionfn(x)q\n(x) becomes very small becausefn(x) is a rather flat function when
compared toq\n(x), which is very peaked. Therefore, as the amount of dataN increases, we expect
all the termsEfnq\n

[s(x)] in (6) to be very similar to each other. When all of them are equal, we
have that (6) implies (4).
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The convergence of a method that minimizes (2) under (5) is guaranteed if (2) is bounded below.
This is going to be the case if we assume that all the factors{fn(x)} in (1) are bounded, that is,
fn(x) ≤ c for somec > 0. See [1] for further details.

We can optimally adjust the prior hyper-parametersν0 by minimizing (2) with respect toν0 under
the new form for the cavities given by (5). After taking gradients with respect toν0 and equating
them to zero, we obtain the stationary conditionEq[s(x)] = Ep[s(x)]. That is, at convergence, the
expectations ofs(x) with respect to the posterior approximationq(x) and with respect to the prior
p(x) should be the same.

3 Local minimization of α-divergences
The energy function given in (2) can be derived as the approximation to the logarithm of the marginal
likelihood given by a message passing algorithm. This algorithm locally minimizes the Kullback-
Leibler (KL) distance between the tilted distributions andthe posterior approximationq. A gener-
alized version of (2) is obtained by running a message passing algorithm that locally minimizes a
generalization of the KL divergence called theα-divergence [3]. The new energy function is

Eα(ν, {λn}) = Φ(ν0) +
(

N
α
− 1

)

log
∫

q(x)dx −
∑N

n=1

1

α
log

∫

fn(x)
αq

\n
α (x)dx . (7)

whereq\nα (x) =
[

q\n(x)/q(x)
]α

q(x) andα ∈ (−∞,∞) \ {0} is a parameter that determines the
form of theα-divergence that is used to measure the distance between then-th tilted distribution
fn(x)q

\n(x) and the posterior approximationq(x). Again, we can simplify the optimization of this
new energy function by assuming that all the cavity parameters are equal and have the form given
by (5). This results inq\nα (x) = exp{s(x)Tβα} whereβα = (N − α)/Nν + ν0.

Whenα takes value one we have that the minimization of (7) under (5)is equivalent to the minimiza-
tion of (2) under (5). In the limit thatα approaches zero, we have that the minimizer of (7) under (5)
converges to the solution that maximizes the variational lower bound. Therefore, by adjusting the
α parameter, we can interpolate between the solutions given by variational Bayes and the solutions
given by the approximation to expectation propagation described in Section 2.1.

3.1 Large scale learning
WhenN is very large, we can minimize (7) under (5) using stochasticoptimization techniques. In
particular, we can uniformly sample a mini-batch of dataS ⊆ {1, . . . , N} and construct the noisy
estimate of the energy function given by

Êα(ν) = Φ(ν0) +
(

N
α
− 1

)

log
∫

q(x)dx − N
|S|

∑

n∈S

1

α
log

∫

fn(x)
αq

\n
α (x)dx . (8)

The gradients of (8) can then used to minimize the original objective by stochastic gradient descent.

3.2 Black-boxα-divergence minimization
In complicated probabilistic models, we might not be able toanalytically solve the integrals in (8)
involving the likelihood factors. However, we can obtain anestimate of these integrals by Monte
Carlo. For this, we drawK samplesx1, . . . ,xK from q

\n
α (x) and then approximate the integrals by

expectations with respect to those samples. This produces the following new noisy estimate of the
energy function

Êα(ν) = Φ(ν0) +
(

N

α
− 1

)

log
∫

q(x)dx−

N

|S|

∑

n∈S

[

1

α
log 1

K

∑

K

k=1
fn(xk)

α

]

−

N

α
Φ(βα) , (9)

whereΦ(βα) is the log-normalizer ofq\nα (x). Sinceq\nα (x) and its samplesx1, . . . ,xK depend
on ν, we can then use the reparametrization trick described in [8] to obtain the correct gradients
of the Monte Carlo estimator. Note, however, that the resulting stochastic gradients will be biased
because the energy function (9) applies a non-linear transformation (the logarithm) to the Monte
Carlo estimator of the integrals. Nevertheless, this bias can be reduced by increasing the number of
samplesK.

Given a new probabilistic model, one can then use the proposed approach to quickly implement,
in an automatic manner, an inference algorithm based on the local minimization ofα-divergences.
For this one only needs to write code that evaluates the likelihood factorsf1, . . . , fN in (9). After
this, the most difficult task is the computation of the gradients of (9) so that stochastic gradient
descent with minibatches can be used to optimize the energy function. However, the computation
of these gradients can be easily automated by using automatic differentiation tools such as autograd
(http://github.com/HIPS/autograd) or theano [9]. This approach allows us to quickly
implement and test different modeling assumptions when solving applied problems.

3

http://github.com/HIPS/autograd


Table 1: Average Test Log-likelihood and Standard Errors, Probit Regression.
Dataset WB-α=1.0 BB-α=1.0 BB-α=10−6 BB-VB EP
Ionosphere -0.3211±0.0134 -0.3206±0.0134 -0.3204±0.0134 -0.3204±0.0134 -0.3186±0.0187
Madelon -0.6771±0.0021 -0.6764±0.0019 -0.6763±0.0012 -0.6763±0.0012 -0.6758±0.0017
Pima -0.4993±0.0098 -0.4997±0.0099 -0.5001±0.0099 -0.5001±0.0099 -0.4994±0.0098
Avg. Rank 3.1565±0.1280 3.0000±0.1053 3.1701±0.1196 3.2041±0.0931 2.4694±0.1245

Table 2: Average Test Log-likelihood and Standard Errors, Neural Networks.
Dataset BB-α=BO BB-α=1 BB-α=10−6 BB-VB Avg. α
Boston -2.549±0.019 -2.621±0.041 -2.614±0.021 -2.578±0.017 0.45±0.04
Concrete -3.104±0.015 -3.126±0.018 -3.119±0.010 -3.118±0.010 0.72±0.03
Energy -0.979±0.028 -1.020±0.045 -0.945±0.012 -0.994±0.014 0.72±0.03
Wine -0.949±0.009 -0.945±0.008 -0.967±0.008 -0.964±0.007 0.86±0.04
Yacht -1.102±0.039 -2.091±0.067 -1.594±0.016 -1.646±0.017 0.48±0.01
Avg. Rank 1.835±0.065 2.504±0.080 2.766±0.061 2.895±0.057

4 Experiments

We perform experiments with a Bayesian probit regression model to validate the black-box approach
described in Section 3.2. We call this method black-box alpha (BB-α). We compare BB-α with
a method that uses the analytic solution to the integrals, which is possible in the probit model.
This method optimizes the energy function given by (8) and itis called white-box alpha (WB-α).
We also compare with a method that optimizes a Monte Carlo approximation to the variational
lower bound [4]. This approximation is obtained in a similarway as the one described in Section
3.2. We call this method black-box variational Bayes (BB-VB). In all the methods, the posterior
approximationq is a factorized Gaussian. The priorp(x) is a factorized Gaussian with zero mean.
We optimize the different objective functions using minibatches of size 32 and Adam [10] with its
default parameter values during 200 epochs. We optimize theprior variance as described at the end
of Section 2.1. The prior variance is optimized after completing each epoch, but only during the
last 150 epochs. BB-α and BB-VB are implemented by drawingK = 100 Monte Carlo samples
for each minibatch. We try the valuesα = 1 andα = 10−6 for BB-α and the valueα = 1 for
WB-α. We also compare with a batch implementation of EP. Table 1 shows the average test log-
likelihood obtained by each technique in the probit regression datasets. We also show the average
rank obtained by each method across all the training/test splits. EP is the best method since it does
not use stochastic optimization. Nevertheless, the other methods obtain results similar to those of EP.
They also perform similarly among them, with BB-α=10−6 obtaining the same results as BB-VB.
BB-α=1 also performs similarly to WB-α=1, which uses the exact gradients for the minibatches.

We also performed additional experiments with neural networks for regression with 50 hidden units
and Gaussian additive noise at the output. The prior is also zero mean Gaussian. In this case we tune
the learning rate and the prior variance for the network weights using Bayesian optimization (BO)
techniques [11]. We also tuneα ∈ (0, 1] in BB-α using BO methods. The noise variance is tuned
by optimizing each method’s objective function. Table 2 shows the results obtained by each method
in the experiments with neural networks. The last column in this table shows the average value for
α selected by the BO routine. In this case, the best method is the version of BB-α that tunesα with
BO, that is, BB-α=BO. Here we do not consider EP or WB-α because the required integrals are not
tractable.

5 Conclusions and future work

We have shown that, by considering the energy function used by expectation propagation (EP) and
constraining the form of the cavity distributions in this method, we obtain an approximation to EP
that is guaranteed to converge and can be implemented by optimizing an energy function without
having to use inefficient double-loop algorithms. The proposed approach can be easily extended to
minimize, instead of the original Kullback-Leibler divergence used by EP, a generalization of this
distance called theα-divergence. Scalability to large datasets can be achievedby using stochastic
gradient descent with minibatches. Furthermore, a combination of a Monte Carlo approximation and
automatic differentiation methods allows our technique tobe applied in a straightforward manner to
arbitrary probabilistic models with complex likelihood factors. Experiments with probit regression
models illustrate the accuracy of the proposed approach. Experiments with neural networks show
that one can obtain gains by tuning the value ofα to the data. The proposed approach can be easily
extended to consider a different value ofα for each likelihood factor or data point. We plan to design
methods for optimally choosing theseα values.
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