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Abstract

We presenblack-box alphaBB-«), an approximate inference method based on
the minimization ofx-divergences between probability distributions. BBcales

to large datasets since it can be implemented using staclggadient descent.
BB-« can be applied to complex probabilistic models with littt®# since it only
requires as input the likelihood function and its gradiefitsese gradients can be
easily obtained using automatic differentiation. By tunthe parametety, we
are able to interpolate between variational Bayes and aectaion propagation
like algorithm. Experiments on probit and neural networgiression problems
illustrate the accuracy of the posterior approximatiortaimied with BBev.

1 Introduction

Probabilistic models are very useful tools to make predingifrom data. However, they require
the computation of a posterior distribution which is oftatractable. To avoid this, one can use
approximate inference techniques. Two examples are ea@tipropagation (EP) and variational
Bayes (VB) [1[2]. These methods adjust the parameters afcéatle distribution so that it is close
to the exact posterior. This is done by finding the statiomenint of an energy function. In VB this
involves solving a minimization problem. In EP this invadv&olving amin-maxproblem, which is
more challenging. Both EP and VB are particular cases of leadivergence minimization, where
a € (—o0,+00)\ {0} is a parameter that specifies the divergence to be minini8letf[o. = 1, EP

is obtained andr — 0 gives VB [3]. The optimal value fott may be model and/or dataset specific.

The energy function of EP (VB) includes expectations of (tgarithm of) the likelihood factors
under a tractable distribution. This complicates the ugeRband VB in complex models for which
there might not exist an analytic solution for these expgewta. Monte Carlo sampling has been
proposed to approximate the intractable expectations if4fBThis approach is known ddack-
boxVB and it allows VB to be applied to almost any model. Here wepmse a similar method for
the more general problem afdivergence minimization and call ilack-box alpha For this, we
simplify the energy function of EP so that then-maxproblem is transformed into a minimization
problem. This enables the use of stochastic optimizatiothauss for large scale learning. We then
generalize the energy function so that it is based on the toramization of a-divergences. Last,
we show that the expectations within the resulting energgtion can be approximated via Monte
Carlo. This allows us to apply the resulting method to aaytiprobabilistic models. The difficulty
of gradient computations is avoided by using automatiediffitiation tools. The proposed method
can interpolate between VBy(— 0) and an EP-like methody(= 1).

2 The energy function of expectation propagation

Let us assume that we want to use EP to approximate the postistributionp(x|D) for some
model parameters, whereD is a dataset withiv data points sampled independently. Then

p(xID) o< [T, Ja(0) | p(x) (1

where eaclf,, (x) is a likelihood factor, that isf,,(x) = p(y.|x) wherey, is then-th data instance,
andp(x) is a prior distribution, which we assume to belong to the exguaial family, that isp(x) =
exp{s(x)"vy — ®(1)}, wherer ands(x) are vectors of natural parameters and sufficient statjstics
respectively, an@ (1) is the logarithm of the normalization constantab{s(x)"vy}.

We can use EP to approximate the postepiot|D) with a distribution within the same exponential
family as the prior. Let(x) = exp{s(x)"T(v + 1)} be the unnormalized posterior approximation
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used by EP. We have used here the parameterizatien, ) to make explicit the contribution of the
prior (given byrg) and likelihood (given by) in ¢. EP also useseavitydistribution with the same
form asq for each likelihood factor. Each cavity distribution apyiroates the result of removing a
likelihood factor from the true posterior. Lgt”(x) = exp{s(x)T (A, + )} be the unnormalized
cavity distribution that approximatdd (1) when th¢h likelihood factor is removed. Again, we have
used here a parameterization that makes explicit the @ortith of the prior to each cavity.

According to [1], the EP energy function is

E(v.{Au}) = () + (N — log [ g(x)dx — Y0 log [ fu(x)g\" (x)dx. (2
This energy is equal to minus the logarithm of the EP apprakion of the model evidenggD),
that is, the normalizer of the right-hand side [af (I) [3]. Wéfere, minimizing[(2) with respect to
v and{\,} is arguably a sensible way to tune these variational paemein practice, EP finds a
stationary solution to the constrained optimization peotl
min, max¢y,} E(v,{\.}) subjectto (N —1)v= SN An, 3)

n=1

where the constraint ii{3) guarantees that{thg} are valid cavity parameters. That is, the product
of all the cavities is equal t&/ — 1 times the posterior approximation (leaving the prior faetside).

By replacingy + vy with 1 /(N —1) Zﬁ;l (An +19) in (@) and then taking derivatives with respect

to each{\,, }, we obtain the conditions that a solutionftd (3) must satisfy
E/s(x)] =E; ,a[s(x)], n=1,...,N. 4)

That is, the expectation efx) with respect to the posterior approximatigix) and with respect to
the product off,,(x) andq\" (x), often called theilted distribution, must be the equal.

The problem in[(B) can be solved using a double-loop algarifB,[6]. This algorithm alternates
between an optimization of the cavity parametexs } in the inner loop and an optimization of the
parameters of the posterior approximatian} in the outer loop. Each iteration of the double-loop
algorithm is guaranteed to minimize the energyin (2). Hosvethe alternating optimization ¢t}
and{\,} is very inefficient and the double-loop algorithm often riegsitoo many iterations to be
useful in practice.

2.1 Energy optimization with tied parameters

To simplify the previous optimization problem, we assume #il the cavity parameters are equal
and have a simple form. We assume that e¥glis obtained as a function of according to

An, = %V, (%)

which guarantees that the constraint in the right-hand&i@@) is satisfied. All the cavities are now
the same and are obtained by scalingn ¢ by (V — 1)/N. This assumption was made [n [7] to
obtain a version of EP callestochastic Expectation Propagatitrat has low memory consumption.
Here, we use this assumption to obtain another version oh&iHg¢ guaranteed to converge and can
be implemented by optimizing an energy function withoutieigg a double-loop algorithm. Recall
thaty captures the contribution of the likelihood to the posterithus, with [5) we are assuming
that each factor,,(x) in (@) has an equal contribution to the likelihood and whenremove that
factor, we only have to scaleby (N — 1)/N.

After replacing),, + v in @) with the right-hand side of5) and taking derivativeith respect to
v, we obtain the new stationary conditions:

Eyfs(x)] = & Snzi By qun[s()] (6)
Therefore, the expectation sfx) with respect taz(x) is going to be equal to the average of the
expectation of(x) across the different tilted distributiorf (x)q\" (x), forn = 1,..., N.

The solution that minimize${2) with respect tosubject to [(b) is expected to converge to the
solution of [3) when more and more data are available NAgrows, we expect and the cavities
to become very peaked. When this happens, the contributieaah likelihood factorf,,(x) to the

tilted distribution f,,(x)q\"(x) becomes very small becaugg(x) is a rather flat function when

compared t@\" (x), which is very peaked. Therefore, as the amount of datacreases, we expect
all the termsE; \.[s(x)] in (@) to be very similar to each other. When all of them areagque
have that[(6) implied{4).



The convergence of a method that minimiZéds (2) under (5) @anteed if[(R) is bounded below.
This is going to be the case if we assume that all the fadtfs$x)} in (@) are bounded, that is,
fn(x) < cfor somec > 0. Seel[1] for further details.

We can optimally adjust the prior hyper-parametgydy minimizing [2) with respect te, under
the new form for the cavities given blyl(5). After taking graidlis with respect tery and equating
them to zero, we obtain the stationary conditlofs(x)] = E,[s(x)]|. That s, at convergence, the
expectations o$(x) with respect to the posterior approximati@ix) and with respect to the prior
p(x) should be the same.

3 Local minimization of a-divergences

The energy function given il 2) can be derived as the appration to the logarithm of the marginal
likelihood given by a message passing algorithm. This digorlocally minimizes the Kullback-
Leibler (KL) distance between the tilted distributions ahd posterior approximatiop A gener-
alized version of(R) is obtained by running a message pasdgorithm that locally minimizes a
generalization of the KL divergence called thealivergence[B]. The new energy function is

Eo.(v,{\.}) = ®(vo) + (% — 1) log [ q(x)dx — 25:1 %logffn(x)o‘q(y(x)dx. )

whereg)" (x) = [¢\"(x)/q(x)]” q(x) anda € (—oo, 00) \ {0} is a parameter that determines the
form of the a-divergence that is used to measure the distance betweentthélted distribution
fn(x)g\"(x) and the posterior approximatigiix). Again, we can simplify the optimization of this
new energy function by assuming that all the cavity pararsetee equal and have the form given
by (8). This results im]é"(x) = exp{s(x)"B.} whereB, = (N — a)/Nv + vy.

Whena takes value one we have that the minimizatiori df (7) urides(@yuivalent to the minimiza-
tion of (2) under((b). In the limit that approaches zero, we have that the minimizefbf (7) uder (5)
converges to the solution that maximizes the variationaklobound. Therefore, by adjusting the
« parameter, we can interpolate between the solutions giyeatiational Bayes and the solutions
given by the approximation to expectation propagationiilesd in Sectioh 2]1.

3.1 Large scale learning
WhenN is very large, we can minimiz€l(7) undél (5) using stochasgitmization techniques. In

particular, we can uniformly sample a mini-batch of déta& {1,..., N} and construct the noisy
estimate of the energy function given by
Eo(v) = ®(o) + (¥ — 1) log [ q(x)dx — |N§| > nes élogffn(x)o‘qg"(x)dx. (8)

The gradients of{8) can then used to minimize the origing@ative by stochastic gradient descent.

3.2 Black-boxa-divergence minimization

In complicated probabilistic models, we might not be ablanalytically solve the integrals ifil(8)
involving the likelihood factors. However, we can obtainesiimate of these integrals by Monte

Carlo. For this, we drawlk’ samples;, ..., xx from q(yl(x) and then approximate the integrals by
expectations with respect to those samples. This prodbed®liowing new noisy estimate of the
energy function

Ba(v) = ®(0) + (£ — 1) log [ a(x)dx — % Ty [2og £ i, fu(i)?] - X0(8.), (9)

where®(3,,) is the log-normalizer ofy}f‘(x). SinCEq,yl(x) and its samplexy, ..., xx depend
on v, we can then use the reparametrization trick described]ito[8btain the correct gradients
of the Monte Carlo estimator. Note, however, that the resyktochastic gradients will be biased
because the energy functidd (9) applies a non-linear toamsition (the logarithm) to the Monte
Carlo estimator of the integrals. Nevertheless, this béashe reduced by increasing the number of
samplesk.

Given a new probabilistic model, one can then use the prapapproach to quickly implement,
in an automatic manner, an inference algorithm based orotteg ininimization ofa-divergences.
For this one only needs to write code that evaluates thahitet factorsfi, ..., fx in (@). After
this, the most difficult task is the computation of the gratieof [9) so that stochastic gradient
descent with minibatches can be used to optimize the enamgtibn. However, the computation
of these gradients can be easily automated by using autodifiirentiation tools such as autograd
(http://github. com H PS/ aut ogr ad) or theano[[®]. This approach allows us to quickly
implement and test different modeling assumptions whevirsplpplied problems.
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Table 1: Average Test Log-likelihood and Standard ErrorsbR Regression.
Dataset WB-a=1.0 BB-a=1.0 BB-a=10""° BB-VB EP
lonosphere -0.32H0.0134 -0.32060.0134 -0.32040.0134 -0.32040.0134 -0.3186t0.0187
Madelon  -0.677%0.0021 -0.67640.0019 -0.67630.0012 -0.67630.0012 -0.6758t0.0017
Pima -0.4993t0.0098 -0.499'A40.0099 -0.500%0.0099 -0.500£0.0099 -0.4994:0.0098
Avg. Rank 3.1565t0.1280 3.000€0.1053 3.170%0.1196 3.204%0.0931 2.46940.1245

Table 2: Average Test Log-likelihood and Standard Erroesjfsl Networks.
Dataset BBa=BO BB-a=1 BB-a=10""° BB-VB Avg. o
Boston -2.549+0.019 -2.6210.041 -2.6140.021 -2.5780.017 0.450.04
Concrete -3.104+0.015 -3.126+0.018 -3.119-0.010 -3.1180.010 0.720.03
Energy -0.979-0.028 -1.026-0.045 -0.945+0.012 -0.994+0.014 0.720.03
Wine -0.949+0.009 -0.945+0.008 -0.96/40.008 -0.964-0.007 0.86-0.04
Yacht -1.102£0.039 -2.091+0.067 -1.5940.016 -1.646-0.017 0.48&0.01
Avg. Rank 1.835t0.065 2.5040.080 2.766:0.061 2.895-0.057

4 Experiments

We perform experiments with a Bayesian probit regressiodehio validate the black-box approach
described in Section 3.2. We call this method black-box alfBB-). We compare BBx with

a method that uses the analytic solution to the integralgciwis possible in the probit model.
This method optimizes the energy function given bly (8) arid d@alled white-box alpha (WB).
We also compare with a method that optimizes a Monte Carlocpation to the variational
lower bound[[4]. This approximation is obtained in a simikay as the one described in Section
[B.2. We call this method black-box variational Bayes (BBjVB all the methods, the posterior
approximatiory is a factorized Gaussian. The prigfx) is a factorized Gaussian with zero mean.
We optimize the different objective functions using miriiees of size 32 and Adarn [10] with its
default parameter values during 200 epochs. We optimizpribevariance as described at the end
of Sectio Z2.lL. The prior variance is optimized after cortipteeach epoch, but only during the
last 150 epochs. BB-and BB-VB are implemented by drawinlg = 100 Monte Carlo samples
for each minibatch. We try the values= 1 anda = 106 for BB-« and the valuex = 1 for
WB-a. We also compare with a batch implementation of EP. Tableowstthe average test log-
likelihood obtained by each technique in the probit regogsdatasets. We also show the average
rank obtained by each method across all the training/tdiss.sSgP is the best method since it does
not use stochastic optimization. Nevertheless, the otle¢hads obtain results similar to those of EP.
They also perform similarly among them, with BB=10—% obtaining the same results as BB-VB.
BB-a=1 also performs similarly to WBr=1, which uses the exact gradients for the minibatches.

We also performed additional experiments with neural neta/éor regression with 50 hidden units
and Gaussian additive noise at the output. The prior is &@smrnean Gaussian. In this case we tune
the learning rate and the prior variance for the network Wsigising Bayesian optimization (BO)
techniques[11]. We also tunre € (0, 1] in BB-a using BO methods. The noise variance is tuned
by optimizing each method'’s objective function. Tdlle 2w the results obtained by each method
in the experiments with neural networks. The last columthig table shows the average value for
« selected by the BO routine. In this case, the best metho@ igdfsion of BBa that tunesy with

BO, thatis, BBa=BO. Here we do not consider EP or WBbecause the required integrals are not
tractable.

5 Conclusions and future work

We have shown that, by considering the energy function ugezkpectation propagation (EP) and
constraining the form of the cavity distributions in thistimed, we obtain an approximation to EP
that is guaranteed to converge and can be implemented hyiajtg an energy function without
having to use inefficient double-loop algorithms. The piszbapproach can be easily extended to
minimize, instead of the original Kullback-Leibler divengce used by EP, a generalization of this
distance called the-divergence. Scalability to large datasets can be achibyaging stochastic
gradient descent with minibatches. Furthermore, a contibimaf a Monte Carlo approximation and
automatic differentiation methods allows our techniquieé@pplied in a straightforward manner to
arbitrary probabilistic models with complex likelihoodcfars. Experiments with probit regression
models illustrate the accuracy of the proposed approacpetiirents with neural networks show
that one can obtain gains by tuning the valuevdb the data. The proposed approach can be easily
extended to consider a different valuenxofior each likelihood factor or data point. We plan to design
methods for optimally choosing theasevalues.
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