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ABST RACT Theorem 2.1 (GBIC Cross-Entropy Approximation). Assume Assumptions A1 — A6 hold. Let
the model prior probability density pe : © — |0, 00) be a continous function on © such that for all

: : : : : : 0 € O: pg(0) > 0. Let p(D,, | M) = exp(—nl(0)) where ((0) = — [ p,(x) log p(x]0)dr(x) < .
BayeS]an model selection criteria (BMSC) require the evaluation of a Assume there exists a number ng such that for alln > ng: p(D,,|M) < oo. Then as n — oo,

computationally intractable multidimensional integral. Although
computationally expensive Monte Carlo simulation methods may be used for
such evaluations, Laplace approximation methods provide a computationally logpo (0| M) | 4 log(g) log(det(A,)) | op(l). 4
inexpensive alternative approach. In this paper, a computationally intractable Z o "

—(1/n) logp(ij.n\M) = E{En(én)}+(1/(2n))TRACE {(An)_lﬁn] -

n 21 27
C o , , . . ’ Proof. First, use the Multidimensional Laplace Approximagion Theorem ([2]. pp. 36-88) leaving
multidimensional BMSC integral is approximated wusing a Laplace] ¢(6"). A", B* and ps(8") to be estimated. The estimators A, = A* +0,(1), B,, = B* + 0,(1).

A

approximation to obtain a new BMSC called GBIC, With respect to seven real| 2w pe(6.) = po(6") + 0,(1) can be substituted to estimate A7, B, and py(0") respectively
e - . . because in conjunction with the existing assumptions the resulting approximation error associated
world data SetS, GBlCX exhibited performance which was superior to BIC-famlly with these substitutionsin (4) is 0,,(1/n). Second, Proposition P2 of Linhart and Volkers (1984)(see
. . . . . : . 9]) shows th
model selection criteria for AlC-biased simulation studies and showed| V°"oWs®« | |
. . . . . . AN 0L . —1
performance which was superior to AIC-family model selection criteria for BIC- (07) = E{6n(0n)} + (1/(2n)) TRACE | (An)™ By | + 0,(1/n). (5)

biased simulation studies. These findings suggest that GB'CX may be especially Thus, Equation (5) must be used rather than ((8*) = E{(,,(0,,)} + O,(1/n) to estimate £(8*) to

: : : : : : : L h i mati in(4)is o.(1/n). ]
useful in situations where a more robust BMSC approximation is desirable. ensure the approximation error in (4)is o,(1/n)
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Data Set : 9, =[x, ..., X, | be arealization of an i.i.d. sequence 9, =[X%,,...,X, | with common density p, (X). GBAI\chgt?;?cee
Probability Model : M = { p(x]0,M):00, 32“} True Model GBIC Choice
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_ - AlC-Biased Simulation Study: .
p(@n 0, M) — exp(—nln (9; M))’ P (®n 6, M) — exp(—nl (9; M)) «Decoy 1: Least Significant Predictor of Original Fitted Model Removed ?ﬂlillfli(gt?qlce
_ o | _ _ «Decoy 2: 2" Least Significant Predictor of Original Fitted Model Removed olee
Margmal Likelihood for M. p(‘(l)n | *M) = I p(j)n ‘ 0, ‘/‘/L) Po (9 ‘ ‘/‘/L)dﬂ with prior p, (9 ‘ ‘M) eDecoy 3: Include Product (Interaction) of Least Significant and 2"d Least Significant Predictor
AIC = 2nl_ (én;Jl/L)+ 2q = —2nE{Iog p(ﬁ"in |O*,JI/L)} +0, (1) only if p, e M (Akaike, 1974) BIC-Biased Simulation Study: o
eDecoy 1: Most Significant Predictor of Original Fitted Model Removed
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GAIC = 2n|:] (én ; M) TRACE ((An ) Bn ) — _2nE {Iog D (@”n | 9*, ./l/l)} Op (1) (Takeuchi, 1976) eDecoy 2: 2" Most Significant Predictor of Original Fitted Model Removed

eDecoy 3: Include Product (Interaction) of Least Significant and 2" Least Significant Predictor

BIC:2ni; (én;m) +qglog(n) = —2log p(g)n | ./I/L) +0, (1) (Schwarz,1978) AlC-Biased Simulation BIC-Biased Simulation

S AIC ~—
GBIC, =2ni, (8, 4)-2log p, (6, | 4)+0 Iog(ij+ logdet A, =—2log p(D, | M)+0, (L) (e.g., Wasserman, 2000) < 50 mBIC
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GBIC=2ni (én;M)—Zlog D, (@)n M/L)Jrq log (le— log det((}in )1l§n): ~2log p(D, | M)+0, (1) (Lvand Liu, 2014)
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GBIC, =2ni. (én;m) —~2log p, (én | /n) 1 qlog (lj ~log det((l\ )_1 B ) +TRACE((/’&n )_1 Bn)

. n 20 /
=—2log p(9D, | M)+o0,(1) (Lvand Liu, 2014) o
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X nyn o\ 2 N n n Figure 1: Percentage of times true model selected as a function of sample size. The new model
selection criterion GBIC x showed performance which was superior to BIC-family BMSC for AIC-
—_9 Iog D ( _r!) ‘ ./‘/L) +0 (1) (New Result !) biased simulation studies and showed performance which was superior to the AIC-family model
n p selection criteria for BIC-biased simulation studies.
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