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Abstract

Bayesian model selection criteria (BMSC) require the evaluation of a computa-
tionally intractable multidimensional integral. Although computationally expen-
sive Monte Carlo simulation methods may be used for such evaluations, Laplace
approximation methods provide a computationally inexpensive methodology. In
this paper, the computationally intractable multidimensional BMSC integral is ap-
proximated with an alternative integrand and a Laplace approximation is applied
to obtain a new BMSC called “GBICX”. With respect to seven real-world data
sets, GBICX exhibited performance which was superior to BIC-family model se-
lection criteria for AIC-biased simulation studies and showed performance which
was superior to AIC-family model selection criteria for BIC-biased simulation
studies. These findings suggest that GBICX may be especially useful in situations
where a more robust BMSC approximation is desirable.

An important task in machine learning is the comparison of probabilistic models. One approach to
model selection is Bayesian Model Selection. The critical principle of Bayesian model selection is
that one computes the posterior likelihood of a model M given the observed data Dn (e.g., [1]).

Definition (Bayesian Model Selection Criterion (BMSC)). Let the random sample D̃n ≡
[x̃1, . . . , x̃n] be a sequence of i.i.d. d-dimensional random vectors with common Radon-Nikodym
density po : Rd → [0,∞) defined with respect to measure ν . Let Dn ≡ [x1, . . . ,xn] denote a

realization of D̃n. Let the parameter space ΘM be a closed and bounded subset of Rq . An element
θ ∈ ΘM is called a parameter vector. Let the model specification M ≡ {p(·|θ,M) : θ ∈ ΘM}
with respect to measure ν . Let the model parameter prior pθ(·|M) : ΘM → [0,∞) be an absolutely
continuous density. Let the likelihood function

p(Dn|θ,M) ≡

n
∏

i=1

p(xi|θ,M).

Let `n(θ) ≡ −(1/n) logp(Dn|θ,M) be called the negative normalized log-likelihood (NNL) for
model M. Let the marginal likelihood

p(Dn|M) ≡

∫

Θ

p(Dn|θ,M)pθ(θ|M)dθ. (1)

Let the model prior pM : {M1, . . . ,MM} → [0, 1] be a probability mass function. Let the poste-
rior model probability

p(M|Dn) ≡
pM (M)p(Dn|M)

p(Dn)
. (2)

Then the BMSC (Bayesian Model Selection Criterion) for model M is defined as:

BMSC = −(1/n) logp(M|Dn). (3)
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Note that if one assumes that pM (Mk) = (1/M) for k = 1, . . . , M then selecting the most probable
model M given the observed data Dn is equivalent to finding the Mk which maximizes p(Dn|Mk)
for k ∈ {1, . . . , M}.

Note that the multidimensional integral in (1) is typically computationally intractable and is often
evaluated using Monte Carlo simulation methods (e.g., [2]). Such Monte Carlo simulation meth-
ods are computationally expensive. An alternative to such methods which can in some cases yield
comparable results at a fraction of the computational expense are methods based upon the Multidi-
mensional Laplace Approximation (e.g., [2]).

1 Bayesian Model Selection Criteria

Let the loss function c : Rd × Θ → R be defined such that c(x, θ) denotes the loss incurred for
experiencing event x when the learning machine parameter values have been set equal to θ. In this
paper, it is assumed that

c(x, θ) = − logp(x|θ,M)

so that the random empirical risk function ˜̀
n(θ) ≡ (1/n)

∑n

i=1
c(x̃i, θ) is a random negative nor-

malized log-likelihood function.

Let Ãn ≡ ∇2 ˜̀
n. Let B̃n ≡ (1/n)

∑n

i=1
∇c(x̃i, ·)[∇c(x̃i, ·)]

T . Let ˆ̀
n ≡ ˜̀

n(θ̂n).

Let Ân ≡ Ãn(θ̂n). Let B̂n ≡ B̃n(θ̂n).

Laplace Approximation methods have been used to obtain computationally tractable approximations
to the integral in (1) given regularity assumptions provided in the last section of this paper. For

example, using Laplace Approximation methods, −2 logp(D̃n|M) may be approximated by the
Bayesian Information Criterion (BIC) ([3])

BIC = 2n˜̀
n(θ̂n) + q log(n).

Higher-order Laplace approximations of−2 log p(D̃n|M) have also been developed. For example, a
classical expansion is discussed by ([1]) and will be referred to as the Laplace Generalized Bayesian
Information Criterion (GBICL). In particular, using the deterministic Laplace Approximation ([2],
pp. 86-88)

GBICL = 2n˜̀
n(θ̂n) − 2 log

[

pθ(θ̂n|M)
]

+ q log
( n

2π

)

+ log(det(Ân)).

More recently, Lv and Liu (2014) (see [4]) have proposed two important new high-order Laplace
Approximation formulas called as GBIC and GBICP that use assumptions about the data generating
process which differ from the assumptions used in the derivation of GBICL.

Finally, the Akaike Information Criterion (AIC) ([5, 6])

AIC = 2n˜̀
n(θ̂n) + 2q

and the Generalized Akaike Information Criterion (GAIC) ([6, 7])

GAIC = 2n˜̀
n(θ̂n) + 2TRACE

(

Â
−1

n B̂n

)

are asymptotically equivalent to cross-validation estimators of the expected NNL (i.e., 2nE{l̂n})
(e.g., [8]) but were not intended to provide computationally tractable approximations of the marginal
likelihood in (1) or the BMSC in (3).

2 Cross-Entropy Laplace Approximation for Bayesian Model Selection

Since p(Dn|θ,M) ≡ exp(−n˜̀
n(θ)), in an analogous manner let p(D̈n|θ,M) ≡ exp(−n`(θ)) be

chosen to approximate p(Dn|θ,M) for a given sample size n because ˜̀
n → ` on Θ with probability

one under the regularity assumptions A1−A5 which are provided in the final section of this paper.

Note that when p(D̈n|θ,M) is substituted for p(Dn|θ,M) in (1) to obtain revised formulas for
(2) and (3), then (3) may be interpreted as the average amount of ”surprise” or average information
received when using model M to model n samples from the data generating process po.
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Theorem 2.1 (GBIC Cross-Entropy Approximation). Assume Assumptions A1 − A6 hold. Let
the model prior probability density pθ : Θ → [0,∞) be a continous function on Θ such that for all

θ ∈ Θ: pθ(θ) > 0. Let p(D̈n|M) ≡ exp(−n`(θ)) where `(θ) ≡ −
∫

po(x) log p(x|θ)dν(x) < ∞.

Assume there exists a number n0 such that for all n ≥ n0: p(D̈n|M) < ∞. Then as n → ∞,

−(1/n) logp(D̈n|M) = E{ ˜̀
n(θ̂n)}+(1/(2n))TRACE

[

(Ân)−1
B̂n

]

−

log pθ(θ̂n|M)

n
+

q

2n
log

( n

2π

)

+
log(det(Ân))

2n
+ op

(

1

n

)

. (4)

Proof. First, use the Multidimensional Laplace Approximation Theorem ([2], pp. 86-88) leaving

`(θ∗), A∗, B∗, and pθ(θ
∗) to be estimated. The estimators Ân = A

∗ + op(1), B̂n = B
∗ + op(1),

and pθ(θ̂n) = pθ(θ
∗) + op(1) can be substituted to estimate A

∗, B
∗, and pθ(θ

∗) respectively
because in conjunction with the existing assumptions the resulting approximation error associated
with these substitutions in (4) is op(1/n). Second, Proposition P2 of Linhart and Volkers (1984)(see
[9]) shows that

`(θ∗) = E{ ˜̀
n(θ̂n)} + (1/(2n))TRACE

[

(Ân)−1
B̂n

]

+ op(1/n). (5)

Thus, Equation (5) must be used rather than `(θ∗) = E{ ˜̀
n(θ̂n)} + Op(1/n) to estimate `(θ∗) to

ensure the approximation error in (4) is op(1/n).

This theorem yields a new alternative high-order Laplace Approximation for (1) and (3).

Definition (GBIC Cross-Entropy Approximation (GBICX)). The Generalized Bayesian Informa-
tion Criterion Cross Entropy Approximation is defined as:

GBICX = 2n˜̀
n(θ̂n) + TRACE[Â−1

B̂] − 2 log
[

pθ(θ̂n|M)
]

+ q log
( n

2π

)

+ log(det(Ân)).

3 Simulation Studies

The performance of seven distinct model selection criteria (AIC, GAIC, BIC, GBIC, GBICP ,

GBICL, and GBICX) and the Negative Normalized Log-Likelihood (NNL) (i.e., ˆ̀
n) were com-

pared in a series of simulation studies. Note that NNL, AIC, and GAIC are model selection criteria
designed to estimate the expected value of NNL, while BIC, GBIC, GBICP , GBICL, and GBICX

are model selection criteria designed to approximate Bayesian Model Selection using the integral in
(1). Also note the derivation of AIC assumes the model is correctly specified, while the derivations
of the other model selection criteria (i.e., GAIC, BIC, GBIC, GBICP , GBICL, and GBICX ) do not
assume correct specification.

The performance of the seven model selection criteria was evaluated as follows. A logistic regression
model was fitted to a data set of n records. Next, the covariate patterns from the data set of n records
were sampled with replacement m times to generate m new data sets. The response variable for
each record in each of the m new simulated data sets was then chosen by using the fitted logistic
regression model to predict the response variable value probability given each covariate pattern and
then randomly setting the response variable value equal to one with the probability specified by the
fitted logistic regression model.

The seven model selection criteria were then used to compare the fit of each of the m simulated
data sets to the original logistic regression model which was used to generate the response variable
values as well as three decoy models so that the percentage of correct model selections could be
explicitly computed. Since (e.g., [8]) BIC-family criteria (i.e., BIC, BIC, GBIC, GBICP , GBICL,
and GBICX ) are biased to find models with fewer parameters than AIC-family criteria (i.e., AIC and
GAIC), decoy models for the BIC-biased simulation omitted highly predictive covariates to avoid
acceptance of decoy models with missing covariates. In contrast, decoy models for the AIC-biased
simulation omitted less critical covariates to encourage BIC-family criteria to accept decoy models
with missing covariates.

3



0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

AIC-Biased Simulation

0 10 20 30 40 50 60 70 80 90 100

Sample Size (%)

BIC-Biased Simulation

MSC Type
AIC

BIC

GAIC

GBIC

GBICL

GBICP

GBICX

NNLL

T
ru

e
 M

o
d
e
l 
C

h
o

s
e
n
 (

%
)

Figure 1: Percentage of times true model selected as a function of sample size. The new model
selection criterion GBICX showed performance which was superior to BIC-family BMSC for AIC-
biased simulation studies and showed performance which was superior to the AIC-family model
selection criteria for BIC-biased simulation studies.

In the simulations reported here, seven data sets ( ”car”, n=1728; ”ctg’, n=2126; ”gamma”, n=19020;
”liver”, n= 583; ”news”, n=15000; ”wine”, n=1599; ”white wine”, n=4898) were downloaded from
the UCI data repository and prepared for logistic regression modeling by rescaling numerical pre-
dictors and removing redundant predictors. Figure (1) shows the average simulation results across
the seven data sets which were also observed for the individual seven data sets as well. The em-
pirical results are consistent with the simulation study design. The AIC-family (MSC) exhibited
superior performance for the AIC-biased simulation study, while the BIC-family exhibited superior
performance for the BIC-biased simulation study. The new model selection criterion, GBICX and
the version of the classic Laplace approximation model selection criterion GBICL exhibited an in-
termediate robust level of performance for both the AIC-biased and BIC-biased simulation studies.
That is, GBICL and GBICX showed superior performance to BIC , GIBCP , and GBICX for the
AIC-biased study and also showed superior performance to AIC and GAIC selection criteria for
the BIC-biased simulation study. These findings suggest that GBICX may be especially useful in
situations where a more robust BMSC approximation is desirable.

4 Regularity Assumptions

Assumption A1. The observed data Dn ≡ [x1, . . . ,xn] is a realization of sequence of n i.i.d.
d-dimensional random vectors with common Radon-Nikodym density po with respect to measure ν .

Assumption A2. The learning machine’s environmental model M ≡ {p(·|θ) : θ ∈ Θ} is a set of
density functions defined with respect to ν in A1 and closed and bounded parameter space Θ ⊆ Rq .

Assumption A3. Let Ω be a finite partition of Rd. Let c : Ω × Θ → R be a piecewise continuous
function on Ω in its first argument and assume c is twice continuously differentiable in its second
argument. The quantity c(x, θ) is the loss incurred by the learning machine for event x in its
environment and with its parameter values equal to θ.

Assumption A4. The functions c, ∇c(x̃, θ), ∇c(x̃, θ)[∇c(x̃, θ)]T , and ∇2c(x̃, θ) are dominated
by integrable functions on Θ with respect to po. Sufficient conditions for A4 to hold are that: (i)
the data generating process is a sequence of bounded random vectors (e.g., discrete finite-valued
random vectors), and (ii) assumptions A1− A3 hold.

Assumption A5. There exists a parameter vector θ
∗
, which is a unique global minimizer of `(·) ≡

E{c(x̃, ·)} in the interior of Θ. Note that this does not rule out learning machines with multiple
strict local minimizers.

Assumption A6. Let A ≡ ∇2`. Assume A
∗ ≡ A(θ∗) is positive definite. Let B ≡

E
{

∇c(x̃i, ·)[∇c(x̃i, ·)]
T
}

. The empirical risk estimator θ̂n is the unique global minimizer of
˜̀
n(·) ≡ (1/n)

∑n

i=1
c(x̃i, ·).
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