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Motivation:

» Bayesian inference always requires a likelihood and prior.

A robust posterior does not depend strongly on the choice of the likelihood
or prior.

* When a range of models or priors are reasonable, one needs quantitative
measures of robustness.

« One measure of local robustness is the derivative of a posterior expecta-
tion with respect to the prior [2].

« Due in part to the difficulty of calculating local robustness from MCMC
draws, robust Bayes methods are not commonly used in practice.

Theoretical Background

Definitions
x,60 = Observed data and parameters of interest, respectively

p(0|cr) = Prior as a function of av(av may be vector- or function-valued)
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» We can quantify local sensitivity with derivatives of expectations:
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Aa = Local sensitivity of [E,« [0] in the prior perturbation direction Ac

«

* To estimate this, we can form a variational approximation to p?:
Q = A set of exp. family posteriors with natural sufficient statistic 0
q; = argmax,co{E, logp (x]0)] + E, [logp (0la)] — B, [log ¢ (0)]} =
= The variational poseterior
> = (I —%,H)"'S, = LRVB covariance estimate

« By Taylor expanding the log prior, LRVB gives a closed form expression
for the variational local sensitivity:
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Influence functions
- Influence function perturbation ) Influence function
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We can measure the effect of adding arbitrary prior mass p.(f) to marginals of
the prior p(6|«). Let 6 be the Dirac delta function. Then:

» Define our perturbation as: p(6;|a;,€) = (1 — €)p(0;|c;) + €d(0; — O50)
* Then the “influence function” of 6, Is:
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* Linear combinations of delta functions describe arbitrary perturbations.
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We describe:

- Easy-to calculate, closed-form local robustnhess measures for posteriors
estimated with mean field variational Bayes.

» Our robustness measures require little computation beyond what is needed
for linear response variational Bayes [1] (LRVB).

» We provide estimates for:

— Sensitivity to prior parameters when the prior is in a parametric family
— Influence functions for arbitrary perturbations

* A demonstration on a non-conjugate hierarchical model from develop-
ment economics with comparison to Markov chain Monte Carlo (MCMC).

Experiments

Microcredit model

We apply our results to a hierarchical model of microcredit interventions in
development economics [4]. The goal is to combine multiple causal studies to

gain statistical power.
Defintions

Profit of business 7 in site &

Yik =
T} = Indicator of whether business ¢ in site k£ was in the control or treatment
1 = Average profitability in site £

T, = Average intervention effect in site &

We observe y;. and T;., where k£ = 1,...,7, and are interested in the posterior
distribution of ... The model is:

Yirl e T Tiy 01 ~ N (e + TiTi, o) where ('uk) ~ N ((M) ,C)
Tk T

We placed a normal prior on (i, 7) and a non-conjugate LKJ prior [3] on C"

C =: SRS where S is diagonal,
H 0 —1
(7)~~((5) )

R 1s a covariance matrix, and
logp(R) = (n — 1)log |R| + Constant

Note that the variational means match the MCMC posterior closely, so the

LRVB assumptions hold. The worst-estimated parameter is C~*.

Perturbing prior parameters

The LRVB predicted sensitivity matches the effect of manually perturbing and
re-running MCMC. As expected, C~! is the worst-estimated.
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Figure 1: Predicted vs actual effects of perturbations

Note that E,; and E,r are robust to n but not to A. The influence function
shows that (u, 7) are only highly sensitive to prior mass centered tightly around
the posterior, which is an unrealistic prior perturbation.
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Figure 2: The sensitivity of n and t
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