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Motivation:
• Bayesian inference always requires a likelihood and prior.

• A robust posterior does not depend strongly on the choice of the likelihood
or prior.

• When a range of models or priors are reasonable, one needs quantitative
measures of robustness.

• One measure of local robustness is the derivative of a posterior expecta-
tion with respect to the prior [2].

• Due in part to the difficulty of calculating local robustness from MCMC
draws, robust Bayes methods are not commonly used in practice.

We describe:
• Easy-to calculate, closed-form local robustness measures for posteriors

estimated with mean field variational Bayes.

• Our robustness measures require little computation beyond what is needed
for linear response variational Bayes [1] (LRVB).

• We provide estimates for:

– Sensitivity to prior parameters when the prior is in a parametric family
– Influence functions for arbitrary perturbations

• A demonstration on a non-conjugate hierarchical model from develop-
ment economics with comparison to Markov chain Monte Carlo (MCMC).

Theoretical Background

Definitions
x, θ = Observed data and parameters of interest, respectively

p(θ|α) = Prior as a function of α(α may be vector- or function-valued)

pαx (θ) = p (θ|x, α) =
p (x|θ) p (θ|α)

p (x)
= Posterior of θ with prior parameter α

• We can quantify local sensitivity with derivatives of expectations:

dEpαx [θ]

dα
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α

∆α = Local sensitivity of Epαx [θ] in the prior perturbation direction ∆α

• To estimate this, we can form a variational approximation to pαx:

Q = A set of exp. family posteriors with natural sufficient statistic θ
qαx = argmaxq∈Q{Eq [log p (x|θ)] + Eq [log p (θ|α)]− Eq [log q (θ)]} =

= The variational poseterior
Σ̂ := (I − ΣqH)−1Σq = LRVB covariance estimate

• By Taylor expanding the log prior, LRVB gives a closed form expression
for the variational local sensitivity:

dEqαx [θ]

dα

∣∣∣∣
α

∆α = Σ̂∇mf where f (m) :=
d

dαT
Eq [log(p(θ|α))] ∆α

Influence functions

We can measure the effect of adding arbitrary prior mass pc(θ) to marginals of
the prior p(θ|α). Let δ be the Dirac delta function. Then:

• Define our perturbation as: p(θi|αi, ε) = (1− ε)p(θi|αi) + εδ(θi − θi0)
• Then the “influence function” of θi0 is:

dEq[θ]

dε
=

qαx (θi0)

p(θi0|α)
(I − ΣqH)−1

(
θi0 −mi

0

)
• Linear combinations of delta functions describe arbitrary perturbations.

Experiments
Microcredit model
We apply our results to a hierarchical model of microcredit interventions in
development economics [4]. The goal is to combine multiple causal studies to
gain statistical power.

Defintions

yik = Profit of business i in site k
Tik = Indicator of whether business i in site k was in the control or treatment
µk = Average profitability in site k
τk = Average intervention effect in site k

We observe yik and Tik, where k = 1, ..., 7, and are interested in the posterior
distribution of τk. The model is:

yik|µk, τk, Tik, σk ∼ N
(
µk + Tikτk, σ

2
k

)
where

(
µk
τk

)
∼ N

((
µ
τ

)
, C

)
We placed a normal prior on (µ, τ ) and a non-conjugate LKJ prior [3] on C:(

µ
τ

)
∼ N

((
0
0

)
,Λ−1

) C =: SRS where S is diagonal,
R is a covariance matrix, and
log p(R) = (η − 1) log |R| + Constant

Note that the variational means match the MCMC posterior closely, so the
LRVB assumptions hold. The worst-estimated parameter is C−1.

Perturbing prior parameters

The LRVB predicted sensitivity matches the effect of manually perturbing and
re-running MCMC. As expected, C−1 is the worst-estimated.

Figure 1: Predicted vs actual effects of perturbations

Note that Epµ and Epτ are robust to η but not to Λ. The influence function
shows that (µ, τ ) are only highly sensitive to prior mass centered tightly around
the posterior, which is an unrealistic prior perturbation.

Figure 2: The sensitivity of µ and τ
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