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1 Introduction

In Bayesian analysis, the posterior follows from the data and a choice of a prior and a likelihood. One
hopes that the posterior is robust to reasonable variation in the choice of prior and likelihood, since
this choice is made by the modeler and is necessarily somewhat subjective. For example, the process
of prior elicitation may be prohibitively time-consuming, two practitioners may have irreconcileable
subjective prior beliefs, or the model may be so complex and high-dimensional that humans cannot
reasonably express their prior beliefs as formal distributions. All of these circumstances might give
rise to a range of reasonable prior choices. If the posterior changes substantially with these choices
of prior, then the analysis lacks objectivity. Measuring the sensitivity of the posterior to variation
in the likelihood and prior is the central concern of the field of robust Bayes. A robust posterior is
one that does not depend strongly on reasonable variation in the choice of model or prior, and robust
Bayes provides methods for quantifying posterior robustness [1].

Despite the fundamental importance of the problem and a considerable body of literature, the tools
of robust Bayes are not commonly used in practice. This is in large part due to the difficulty of
calculating robustness measures from MCMC draws[2, 3]. Although methods for computing robust-
ness measures from MCMC draws exist, they lack generality and often require additional coding or
computation 1. Consequently, formal robust Bayes methods are least used in complex, hierarchical
models, exactly when they are needed most. Instead, modelers are tempted to either compute ad-hoc
robustness estimates (e.g. by manually changing the priors and re-running their chain) or to ignore
the problem altogether.

In contrast to MCMC, variational Bayes (VB) techniques are readily amenable to robustness anal-
ysis. The derivative of a posterior expectation with respect to a prior or data perturbation is a mea-
sure of local robustness to the prior or likelihood [4]. Because VB casts posterior inference as an
optimization problem, its methodology is built on the ability to calculate derivatives of posterior
quantities with respect to model parameters, even in very complex models. Variational methods for
posterior approximation are increasingly providing a scalable alternative to MCMC for posterior

1See Appendix A for a literature review.
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approximation, and this offers the opportunity to bring fast, easy-to-use robustness measures into
common practice.

In the present work, we develop local prior robustness measures for mean-field variational Bayes
(MFVB), a VB technique which imposes a particular factorization assumption on the variational
posterior approximation. In past work [5], we demonstrated that a MFVB analysis can be quickly
and straightforwardly augmented to provide information about local perturbations of the posterior
variational approximation using linear response methods from statistical physics. We show that
this framework can be extended to provide fast, easy-to-use prior robustness measures for posterior
inference and thereby bring robustness analysis into common Bayesian practice.

In the remainder of the present work, we start by outlining existing local prior measures of robustness
in Section 2. We extend the linear response techniques of [5] in Section 3. In Section 4 we use
these results to derive closed-form measures of the sensitivity of mean-field variational posterior
approximation to prior specification. In Section 5 we demonstrate our method on a meta-analysis of
randomized controlled interventions in access to microcredit in developing countries.

2 Robustness measures

Denote our N data points by x = (x1, . . . , xN ) with xn ∈ RD. Denote our parameter by the vector
θ ∈ RK . We denote the prior parameters by α, where either α ∈ RM or α may be function-valued.
Let pαx denote the posterior distribution of θ, as given by Bayes’ Theorem:

pαx (θ) := p (θ|x, α) =
p (x|θ) p (θ|α)

p (x)
.

A typical end product of a Bayesian analysis might be a posterior expectation of some function
g (θ) (e.g., a mean or variance): Epαx [g (θ)], which is a functional of g. We suppose that we have
determined that the prior parameter α belongs to some set A, perhaps after expert prior elicitation.
Finding the extrema of Epαx [g (θ)] as α ranges over all of A is intractable or difficult except in
special cases [6]. An alternative is to examine how much Epαx [g (θ)] changes locally in response to
small perturbations in the value of α:

dEpαx [g (θ)]

dα

∣∣∣∣
α

∆α (1)

That is, we consider local robustness [4] properties in lieu of global ones. When α is function-
valued, we take Eq. (1) to be a Gateaux derivative. By calculating Eq. (1) for all ∆α ∈ A − α, we
can estimate the robustness of Epαx [g (θ)] in a small neighborhood of α.

3 Linear response variational Bayes and extensions

We next review and extend linear response perturbations to a mean-field variational Bayes posterior
approximation [5] in order to quickly and easily evaluate Eq. (1). Let qαx denote the variational
approximation to posterior pαx . Recall that qαx is an approximate distribution selected to minimize the
Kullback-Liebler divergence between pαx and q across distributions q in some class Q. We consider
the case where the variational family, Q, is a class of products of exponential family distributions
[7]:

qαx := argminq∈Q {S − L} for Q =

{
q : q(θ) =

K∏
k=1

q(θk); ∀k, q(θk) ∝ exp(ηTk θk)

}
L := Eq [log p (x|θ)] + Eq [log p (θ|α)] , S := Eq [log q (θ)] (2)
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We assume that qαx , the solution to Eq. (2), has interior exponential family parameter ηk. In this
case, qαx can be completely characterized by its mean parameters, m := Eqαx [θ] [8]. One can perturb
the objective in Eq. (2) in the direction of a function f of the mean parameter m by some amount t,
where t is a vector with length equal to the output of f :

qt := argminq∈Q
{
S − L+ f(m)T t

}
(3)

[5] showed that when f(m) = m, we can calculate the local change in the mean of qt as t varies:

dEqt [θ]

dtT

∣∣∣∣
t=0

= (I − V H)
−1
V =: Σ̂, where V := Covqαx (θ) and H :=

∂2L

∂m∂mT
. (4)

As shown in Appendix B, if f(m) and h(m) are both smooth functions of m, then

dh(mt)

dt
= ∇hT Σ̂∇f (5)

Eq. (4) is the special case of Eq. (5) where h(m) = f(m) = m. In [5], the goal was to calculate a
posterior covariance estimate Σ̂. Here, our goal is to calculate a measure of robustness to changes in
α. Let αt = α+ ∆αt be the value of α perturbed in direction ∆α by an infinitesimal scalar amount
t. ∆α may be vector- or function-valued. Note that Eq [log(p(θ|α))] from Eq. (2) is a function of
m, since it is an expectation with respect to q, which is completely parameterized by m. Assuming
that p(θ|α) is a smooth function of α, a Taylor expansion in ∆αt gives

Eq [log(p(θ|αt))] = Eq [log(p(θ|α))] +
d

dαT
Eq [log(p(θ|α))] ∆αt+O(t2)⇒

f(m) :=
d

dαT
Eq [log(p(θ|α))] ∆α and h(m) := Eqαx [g(θ)] (6)

With f(m) and h(m) defined as in Eq. (6), Eq. (5) gives us the robustness measure Eq. (1). As in
LRVB, these derivatives are in fact the exact robustness of the variational posterior expectations to
prior perturbation. The extent to which it represents the true prior sensitivity depends on the extent
to which the MFVB means are good estimates of the true posterior means.

4 Robustness measures from LRVB

We now turn to calculating f(m) from Eq. (6) for some common cases. For simplicity, we will take
g(θ) = θ. First, consider a prior in the exponential family with sufficient statistics π(θ).

log p(θ|α) = αTπ(θ)⇒ f(m) = Eqαx [π(θ)] ∆α (7)

Here, π(θ) is a vector of the same length as α. Note that f(m) may be known exactly or estimated
using Monte Carlo simulation. The simplest case is when the priors are conditionally conjugate for
p(x|θ). In that case, π(θ) = θ, and

dEqαx [θi]

dαj
= Σ̂ij . A more complex non-conjugate example is the

LKJ prior on a covariance matrix, which we explore in Section 5.

Next, we consider changing the functional form of p(θ|α), taking ∆α to be function-valued. We
will focus on perturbations to the prior marginals, since local robustness properties of functional
neighborhoods of the full posterior have bad asymptotic properties [9]. Let θi be a subvector of θ
whose marginal we will perturb. We assume that both the prior and variational distribution factor
across θi:

qαx (θ) = q(θi)q(θ−i) and p(θ|α) = p(θi|αi)p(θ−i|α−i)

where −i denotes 1, ...,K \ i. For simplicity of notation, assume without loss of generality that the
i indices come first: θT = (θTi , θ

T
−i) (Both qαx and the prior may factorize still further.)
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In order to ensure that the perturbed prior is properly normalized, we will shift an infinitesimal
amount of prior mass from the original p(θi|α) to a density pc(θi):

p(θi|αi, ε) = (1− ε)p(θi|αi) + εpc(θi) (8)

This is known as ε-contamination, and its construction guarantees that the perturbed prior is properly
normalized 2. By taking pc(θi) = δ(θi − θi0) to be a Dirac delta function at θi0, Eq. (5) and Eq. (6)
give (see Appendix C):

dEq[θ]
dε

=
qαx (θi0)

p(θi0|α)
(I − V H)−1

(
θi0 −mi

0

)
(9)

This is known as an “influence function” [4]. Note that p(θi0|α) is known a priori, and that qαx (θi0)
is a function of the moment parametersm, sincem entirely specifies qαx . Viewed as a function of θ0,
Eq. (9) characterizes how much each moment parameter, m, is affected by adding an infinitesimal
amount of prior mass at θi0. By the linearity of the derivative, one can use weighted combinations
of delta functions and Eq. (9) to estimate the sensitivity to any prior function 3.

5 Experiments

We applied the methods above to a hierarchical model of microcredit interventions in development
economics [11]. One output of the model is µ and τ , top level parameters in a hierarchical model that
measure average site profitability and the effectiveness of microcredit interventions, respectively.
Here, we present the sensitivity of these parameters to Λ, the information matrix of a normal prior
on (µ, τ), and η, the concentration parameter in a non-conjugate LKJ prior[12] on the covariance
of (µ, τ). The left panel of Fig. (1) shows the estimates from Eq. (7) normalized by the posterior
standard deviation. The results are robust to η but extremely non-robust to Λ. The second panel
compares the prediction of Eq. (7) to the actual change in MCMC means to a small change in Λ11.
The results match closely. The third panel shows Eq. (9), the influence function of the prior for
(µ, τ) on τ . The “X” is the posterior mean. Adding prior mass on only one side of the mean would
be highly influential, though it is hard to imagine such a prior representing an a priori belief.

We formed the LRVB estimates using JuMP[13] and used STAN[14] to generate MCMC samples.
The VB and MCMC results are nearly identical, indicating that the assumptions necessary for LRVB
hold. Generating one set of MCMC draws took 15 minutes, and the LRVB estimates, including
calculating all the reported sensitivity measures, took 45 seconds. For more details, see Appendix D.

Figure 1: Effectiveness of robustness measures in the microcredit model

2ε-contamination is principally adopted for analytic convenience, though it is an expressive class of pertur-
bations [9]. For more exotic perturbation classes, which we do not consider here, see[10].

3A closed form for pc(θi) other than weighted combinations of Dirac delta functions is given in Ap-
pendix C.2. The influence function is closely related to the worst-case prior perturbation within a metric ball in
the space of prior functions [9]. We show in Appendix C.3 that LRVB also gives a closed form for this worst-
case perturbation. Appendix C.4 provides some intuition by comparing the LRVB results to the corresponding
formulas for exact inference.
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Appendices
A Robust Bayes with MCMC

There is an extensive literature on Robust Bayesian techniques, surveyed in [1]. We focus on local
robustness techniques [4, 9, 15]. In the original papers, many authors focused on either theoretical
results or models with special structure that rendered robustness measures tractable. Of MCMC, one
of the founders of the field of Bayesian Robustness writes:

“The MCMC methodology was not directly compatible with many of the robust Bayesian tech-
niques that had been developed, so that it was unclear how formal robust Bayesian analysis could be
incorporated into the future ‘Bayesian via MCMC’ world. Paradoxically, MCMC has dramatically
increased the need for consideration of Bayesian robustness, in that the modeling that is now rou-
tinely utilized in Bayesian analysis is of such complexity that inputs (such as priors) can be elicited
only in a very casual fashion.”[2]

Another recent author adds:

“Surprisingly, despite considerable theoretical advances in formal sensitivity analysis, it is barely
used in every-day practice... a formal robustness methodology which is feasible, fairly quick, oper-
ating with low extra computing effort and provided by default in a dedicated software, is strongly
required.” [3]

A number of papers have proposed methods for performing robustness analyses using MCMC tech-
niques. [15], following many previous theoretical works [4], exchanges the integral in a posterior
expectation with the derivative with respect to prior perturbations, giving a robustness estimate that
can be evaluated from MCMC samples. [16, 17] extends this idea. These approaches exploit impor-
tance sampling and / or closed forms for derivatives or posterior densities, and care must be taken
to control the variance of the MCMC estimates. The papers [18, 19] make second-order approxi-
mations to the log posterior and employ numerical techniques to calculate robustness measures. [3]
uses a sophisticated methodology to choose a grid of prior points at which they numerically estimate
the sensitivity using estimates of the posterior density. [20] proposes a distinctive method based on
particle filtering in which particle weights are re-adjusted to produce draws from a perturbed prior.
The authors are unaware of any previous work applying robust Bayes techniques in the context of
variational methods.

The advantage of using robust Bayes with LRVB over these MCMC-based techniques is simplic-
ity and computational ease. Little extra code and no extra approximations or assumptions beyond
that required for LRVB are required to compute the robustness measures below. LRVB robustness
measures are the exact sensitivity of the variational solution to changes in the prior, and they will be
accurate to the extent that the variational approximation to the posterior mean of interest is accurate
[5].

B LRVB covariance of functions

Let us consider LRVB estimates of the covariances of functions of natural parameters rather than the
natural parameters themselves. Suppose we have a function φ (η), and a variational solution q (m)
where m = Eq [η]. Since q is fully parameterized by m, we can write

Eq [φ (η)] = f (m)
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for some continuous f (m). We can consider a perturbed log likelihood that also includes f (m):

log pt = log p+ tT0 m+ tff (m) := log p+ tTmf

t :=

(
t0
tf

)
mf :=

(
m

f (m)

)
As in [5], we use the fixed point equations:

Et := E + tTmf

dEt
dm

= 0⇒

dE

dm
+ ( I ∇f )

(
t0
tf

)
= 0

M (m) :=
∂E

∂m
+m

Mt (m) := M (m) + ( I ∇f )

(
t0
tf

)
Mt (m∗) := m∗ (definition of m∗)

dm∗t
dtT

=
∂Mt

∂mT

∣∣∣∣
m=m∗

t

dm∗t
dtT

+
∂Mt

∂tT

=

(
∂M

∂mT

∣∣∣∣
m=m∗

t

+
∂

∂mT
( I ∇f )

(
t0
tf

))
dm∗

dtT
+ ( I ∇f )

The term ∂
∂mT

( I ∇f )

(
t0
tf

)
is awkward, but it disappears when we evaluate at t = 0, giving

dm∗t
dtT

=

(
∂M

∂mT

∣∣∣∣
m=m∗

t

)
dm∗

dtT
+ ( I ∇f )

=

(
∂2E

∂m∂mT
+ I

)
dm∗

dtT
+ ( I ∇f )

dm∗

dtT
= −

(
∂2E

∂m∂mT

)−1

( I ∇f )

Recalling that

dm∗

dtT0
:= Σ̂

We can plug in to see that

dm∗

dtTf
= Σ̂∇f
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This means that the covariance of the natural sufficient statistics with the function φ (η) are deter-
mined by a linear combination of the LRVB covariance matrix.

A similar conclusion can be reached by considering the response of the expectation of a quantity
other than a natural parameter to a generic perturbation. Consider perturbing the log likelihood by
some function tgg (m). Then by the reasoning above,

df (m)

dtg
=

df

dmT

dm

dtg
= ∇fT Σ̂∇g

This is Eq. (5), and represents the LRVB covariance between two quantities with variational expec-
tation f (m) and g (m) respectively. As in the present, that covariance can also be interpreted as the
sensitivity of g(m) to a perturbation of the objective by g(m).

C Robustness Derivations

In this section, we derive results stated in Section 4. For generality, when possible we will derive
results for the full vector θ rather than the sub-vector θi when the proof would be identical for the
subvector under the assumption that q(θ) = q(θi)q(θ−i).

C.1 Sensitivity to ε−contamination

For a given pc(θ) in Eq. (8), we can consider p(θ|α, ε) to be a class of priors parameterized by (α, ε),
and take ε = ∆α in Eq. (6). We then need to calculate

d

dε
Eq [log p(θ|α, ε)]

∣∣∣∣
ε=0

= Eq
[
d

dε
log ((1− ε)p(θ|α) + εpc(θ))

∣∣∣∣
ε=0

]
= Eq

[
pc(θ)

p(θ|α)
− 1

]

Since the variational solution is unaffected by adding constants to the ELBO, we can take

f(m) := Eq
[
pc(θ)

p(θ|α)

]
(10)

C.2 Sensitivity to a function

We will calculate ∇f(m) using Eq. (10) for a general function pc(θ) and then use this result to
derive Eq. (9) as a special case. In this section, we rely on the fact that the variational distribution,
q(θ), is in the exponential family.

The directional derivative for a perturbation pc(θ) is given by the Taylor expansion of Eq
[
pc(θ)
p(θ|α)

]
in terms of the exponential family moment parameters:

d

dm
Eq
[
pc(θ)

p (θ|α)

]
= V −1 d

dη

∫
exp

(
ηT θ −A (θ)

) pc(θ)

p (θ|α)
dθ

= V −1

∫
q (θ) (θ −m)

pc(θ)

p (θ|α)
dθ

= V −1Eq
[
(θ −m)

pc(θ)

p (θ|α)

]
(11)
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Taking pc(θ) = δ (θi = θi0) to be a Dirac delta function gives Eq. (9).

C.3 Extremal derivative

The influence function is closely related to the worst-case prior perturbation in a metric ball around
the original prior, p(θi|αi). We refer the reader to [9] for the background. Given Eq. (11), the proof
for the variational case is essentially identical.

First, to match [9], let pc(θ) be a signed measure and consider perturbations of the form

p(θ|α, ε) = p(θ|α) + εpc(θ)

Because the variational solution is invariant to constants, the variational sensitivity to this perturba-
tion is identical to that of ε− contamination. Consequently, the sensitivity is given by Eq. (11) and
Eq. (5):

dEq [g(θ)]

dt
= ∇hT Σ̂V −1Eq

[
(θ −m)

pc(θ)

p (θ|α)

]
= Eq

[
∇hT (I − V H)

−1
(θ −m)

pc(θ)

p (θ|α)

]
Define

a (θ) = ∇hT (I − V H)
−1

(θ −m)
q (θ)

p (θ|α)

As in [9], for p ∈ [1,∞] and 1
p + 1

q = 1, define the size of a perturbation as(∫ ∣∣∣∣ pc(θ)p(θ|α)

∣∣∣∣p dΠ

) 1
p

(12)

...where Π is the measure on θ induced by p(θ|α) and p ∈ [1,∞]. Let (·)+ denote the positive part
and (·)− the negative part of the term in the parentheses.

Eq

[∣∣∣∣RT (I − V H)
−1

(θ −m)
q (θ)

p (θ|α)

∣∣∣∣+
]

=

∫ ∣∣∣∣a (θ)
+ pc(θ)

p (θ|α)

∣∣∣∣ dΠ

≤
(∫ ∣∣∣a (θ)

+
∣∣∣q dΠ

) 1
q
(∫ ∣∣∣∣ pc(θ)p (θ|α)

∣∣∣∣p dΠ

) 1
p

=

(∫ ∣∣∣a (θ)
+
∣∣∣q dΠ

) 1
q

Since we are taking pc(θ) such that ‖ pc(θ)p(θ|α) ; Π‖p = 1. This is maximized when∣∣∣a (θ)
+
∣∣∣q ∝

∣∣∣∣ pc(θ)p (θ|α)

∣∣∣∣p
pc(θ) = π

∣∣∣∣(RT (I − V H)
−1

(θ −m)
)+ q (θ)

p (θ|α)

∣∣∣∣
q
p

A similar analysis follows for a(θ)−, and it follows that the worst-case prior perturbation in a
p−neighborhood of p(θ|α) is given by
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pc(θ) = p(θ|α) max
{∣∣a(θ)+

∣∣ 1
p−1 ,

∣∣a(θ)−
∣∣ 1
p−1

}
(13)

C.4 Comparison with Exact Results

Comparing Eq. (13) with [9, Equation 6] lends some intuition. In our notation, the exact extremal
perturbation is given by Eq. (14) by the same expression as Eq. (13) but with a different a(θ):

ap (θ) = g(θ)
(
θ − Epαx [θ]

) p (θ|x)

p(θ|α)
(14)

Here, qαx plays the role of the marginal posterior p(θ|x), and Eqαx [g(θ)]
T

(I−V H)−1 plays the role
of g(θ). Note that a principal difficulty of using Eq. (14) is that Eq. (14) requires knowledge of ratio
of the posterior density to the prior density, which is not automatically available from MCMC draws.
The MFVB solution circumvents this difficulty by providing an explicit parametric approximation
to the posterior density.

D Microcredit Model

We will reproduce a variant of the analysis performed in [11], though with somewhat different prior
choices. Randomized controlled trials were run in seven different sites to try to measure the effect of
access to microcredit on various measures of business success. Each trial was found to lack power
individually for various reasons, so there could be some benefit to pooling the results in a simple
hierarchical model. For the purposes of demonstrating robust Bayes techniques with VB, we will
focus on the simpler of the two models in [11] and ignore covariate information.

We will index sites with k = 1, ..,K (here, K = 7) and business within a site by i = 1, ..., Nk. In
site k and business i we observe whether the business was randomly selected for increased access
to microcredit, denoted Tik, and the profit after intervention, yik. We follow [21] and assume that
each site has an idiosyncratic average profit, µk and average improvement in profit, τk, due to the
intervention. Given µk, τk, and Tik, the observed profit is assumed to be generated according to

yit|µk, τk, Tik, σk ∼ N
(
µk + Tikτk, σ

2
k

)
The site effects, (µk, τk), are assumed to come from an overall pool of effects and may be correlated:

(
µk
τk

)
∼ N

((
µ
τ

)
, C

)
C :=

(
σ2
µ σµτ

σµτ σ2
τ

)
The effects µ, τ , and the covariance matrix V are unknown parameters that require priors. For (µ, τ)
we simply use a bivariate normal prior. However, choosing an appropriate prior for a covariance
matrix can be conceptually difficult [22]. Following the recommended practice of the software
package STAN[14], we derive a variational model to accommodate the non-conjugate LKJ prior
[12], allowing the user to model the covariance and marginal variances separately. Specifically, we
use

10



C =: SRS

S = Diagonal matrix
R = Covariance matrix

Skk =
√

diag(C)k

We can then put independent priors on the scale of the variances, Skk, and on the covariance matrix,
R. We model the inverse of C with a Wishart variational distribution, and use the following priors:

q
(
C−1

)
= Wishart(VΛ, n)

p (S) =

2∏
k=1

p(Skk)

S2
kk ∼ InverseGamma(αscale, βscale)

log p(R) = (η − 1) log |R|+ C

The necessary expectations have closed forms with the Wishart variational approximation, as derived
in Appendix E.

In addition, we put a normal prior on (µ, τ)T and an inverse gamma prior on σ2
k:

(
µ
τ

)
∼ N

((
0
0

)
,Λ−1

)
σ2
k ∼ InverseGamma(ατ , βτ )

The prior parameters used were:

Λ =

(
0.02 0

0 0.02

)
η = 15.01

σ−2
k ∼ InverseGamma(2.01, 2.01)

αscale = 20.01

βscale = 20.01

ατ = 2.01

βτ = 2.01

D.1 Results

First, note that the the MCMC results match the VB means very closely, indicating that the assump-
tions underlying LRVB are satisfied. The least- well estimated parameters are C−1.

We will focus on the robustness of µ and τ , since as the higher-level parameters in the hierarchical
model, they are both more susceptible to prior influence and more generally interpretable (as the

11



Figure 2: Comparison of MCMC and VB Results for the microcredit data

average profit and the causal effect of microcredit, respectively). The sensitivity of (µ, τ) to Λ and
η is shown in the left panel of Fig. (3) as a proportion of the LRVB posterior standard deviation.
The parameters can be seen to be quite sensitive to changes in Λ. For example, if the upper left
component of Λ, Λ11, were to increase by 0.04, Eq[µ] would be expected to increase by two posterior
standard deviations. If 0.06 is a subjectively reasonable value for Λ11, then the ordinary posterior
confidence interval for µ is quite inadequate in capturing the subjective range of beliefs that might
be assigned to µ. In contrast, the sensitivty to η, the LKJ parameter, is quite small.

The right panel of Fig. (3) shows the influence function of (µ, τ) on τ . The X marks the posterior
mean. Recall that the prior mean is (0, 0) and relatively diffuse. The numbers are quite large,
indicating that adding a small amount of prior mass precisely near the posterior could influence
the posterior considerably. However, such a prior perturbation would have to have informed by the
data – adding mass nearly anywhere else would have a much smaller effect. What kind of prior
perturbation is reasonable remains a subjective decision of the modeler.

Figure 3: The sensitivity of µ and τ

Finally, Fig. (4) shows the effects of changing Λ11 on a re-run MCMC chain compared with the
effects predicted by LRVB robustness measurements. The results are very good for all except C−1,
which was not estimated well by the VB model. Even forC−1, the LRVB estimates are directionally
correct.

E LKJ Priors for Covariance Matrices in Mean Field Variational Inference

In this section we briefly derive closed form expressions for using an LKJ prior with a Wishart
variational approximation.
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Figure 4: Predicted vs Actual effects of perturbations

We want to estimate a multivariate normal covariance matrix with flexible priors. For simplicity, let
us study in isolation the model:

log p (y|Λ) = −1

2
yTΛy +

1

2
log Λ

Λ = Σ−1

Σ =: SRS

Sk :=
√
diag (Σ)k

log p (S) =

K∑
k=1

log p (Sk)

log p (R) = log
(
C |R|η−1

)
= (η − 1) log |R|+ C

= (LKJ prior)

Let us use a Wishart variational distribution for Λ:

q (Λ) = Wishart (V, n)

Eq [Λ] = nV

Eq [log |Λ|] = ψp

(n
2

)
+ log |V |+K log 2

ψp (n) =

p∑
i=1

ψ

(
2n+ 1− i

2

)

13



Then Σ has an inverse Wishart distribution:

Eq [Σ] =
V −1

n−K − 1

Σkk ∼ InverseWishart
((
V −1

)
kk
, n−K + 1

)
Eq [Σkk] =

(
V −1

)
kk

n−K + 1− 2
=

(
V −1

)
kk

n−K − 1

log p (Σkk) = −
(

(n−K + 1) + 1 + 1

2

)
log Σkk −

1

2

(
V −1

)
kk

Σkk
+ C

=

(
−n−K + 1

2
− 1

)
log Σkk −

1
2

(
V −1

)
kk

Σkk
+ C

= log

(
InvGamma

(
n−K + 1

2
,

1

2

(
V −1

)
kk

))
⇒

Eq [log Σkk] = log

(
1

2

(
V −1

)
kk

)
− ψ

(
n−K + 1

2

)
We’ll also need the expectation of the square root of an inverse gamma distributed variable.

p (x) =
βα

Γ (α)
x−α−1 exp

(
−β
x

)
E
[
x

1
2

]
=

∫
βα

Γ (α)
x−α−1+ 1

2 exp

(
−β
x

)
dx

=

∫
βα

Γ (α)

βα−
1
2

Γ
(
α− 1

2

) Γ
(
α− 1

2

)
βα−

1
2

x−(α− 1
2 )−1 exp

(
−β
x

)
dx

=
βα

Γ (α)

Γ
(
α− 1

2

)
βα−

1
2

= β
1
2

Γ
(
α− 1

2

)
Γ (α)

Thus

Eq

[√
Σkk

]
= Eq [Sk] =

√
1

2
(V −1)kk

Γ
(
n−K

2

)
Γ
(
n−K+1

2

)
This means we have a closed form expectation of the LKJ prior. For the scale parameters, we can
use a gamma prior distribution:

log p (Sk) = log Γ (α, β)

= −βSk + (α− 1) logSk + C

= −βSk +
(α− 1)

2
logS2

k + C

Finally, these expectations are given in terms of the natural parameters, but for LRVB we need
derivatives with respect to the mean parameters. In the Wishart distribution, the mapping from mean
parameters to natural parameters does not have a closed form. Eq. (4) requires the derivatives of the
likelihood with respect to the moment parameters, and the Hessian must be transformed before use.
Note that the Hessian of the likelihood is not necessarily at a maximum, so the transform requires a
third-order tensor product.
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