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Abstract

Perhaps ironically, the deep learning community is far closer to our vision of “au-
tomated modelling” than the probabilistic modelling community. Many complex
models in deep learning can be easily implemented and tested, while variational
inference (VI) techniques require specialised knowledge and long development
cycles, making them extremely challenging for non-experts. A possible solution,
lifted from manufacturing, is to create a Rapid Prototyping pipeline by combin-
ing recent advances in stochastic VI and developments in symbolic differentiation.
This seemingly naive combination of existing techniques opens the door to a series
of exciting new research problems in VI and engineering. I discuss the limitations
of current tools and propose novel ideas to research such as black-box variance
reduction, VI model compositionality, and others. Similar ideas in deep learning
have led to rapid development in model complexity, speeding up the innovation
cycle. This pipeline forms a vital steppingstone in the road towards automated
statistics, making VI accessible to larger audiences than before.

1 Introduction

Variational inference (VI, [1, 2, 3, 4]) has fundamentally changed the way by which we develop
probabilistic models. Compared to cumbersome exact inference techniques, with VI we develop
complex models and then approximate their posteriors with simple distributions. But VI requires
specialised knowledge and long development cycles, making it extremely challenging for non-
experts to develop new models. The VI pipeline requires a high degree of engineering experience,
which biologists, physicists, and other potential users of the technique often lack. This is in contrast
to our aim of simplifying the modelling process and automating it as far as possible.

The normal development cycle of variational inference is composed of several steps.

1. We first obtain the data X, examine it, and design an initial probabilistic model trying to
capture the distribution that generated the data,

p(x∗|X) =

∫
p(x∗|ω)p(ω|X)dω

with some latent random variable ω. The posterior p(ω|X) is often intractable.
2. We then choose an approximating variational distribution qθ(ω) trying to match the prop-

erties of the intractable posterior closely.
3. In the third step we implement the model: we evaluate the divergence between the approx-

imating posterior and the true posterior obtaining a lower bound,

L(θ) :=
∫
qθ(ω) log p(X|ω)dω −KL(qθ(ω)||p(ω)).

This bound is often still intractable, forcing us to use various techniques to bound it further.
We use matrix calculus to calculate the derivatives of the bound with respect to all varia-
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tional parameters θ, implement the derivatives in a programming language of choice, test
the derivatives using finite differences, and optimise the computation for performance and
numerical stability.

4. Lastly we evaluate the model, examining the probabilistic model’s ability to capture the
distribution underlying our data and adjust the model accordingly. This cycle is repeated
several times until we are happy with the model’s performance.

By far the most time consuming step of this pipeline is the third one – the implementation step: every
small change to the model in the last step of a cycle forces us to re-compute many of the derivatives,
re-implementing them, re-optimising, and testing them again. Further, coming up with good bounds
often requires broad familiarity with the literature (especially for non-conjugate models). For ex-
ample, the Softmax likelihood is not conjugate to a Gaussian approximating distribution, and the
integral of Gaussian-distributed latent variables together with a Softmax distribution is intractable.
Many bounds have been suggested for this integral, requiring familiarity with fields ranging from
machine learning to statistics: Jaakkola and Jordan’s bound [5], the tilted bound [6], piecewise linear
and quadratic bounds [7], the Bohning bound [8], and Blei and Lafferty’s bound [9], to name a few.

This long pipeline has stood in the way of many users of probabilistic modelling, and curbed its
adoption by the scientific community for a long time. Probabilistic programming has attempted
to answer some of these difficulties, with programming languages like BUGS [10] (followed by
WinBUGS [11] and later OpenBUGS [12]), Stan [13], Church [14], and many others suggested over
the past 20 years. Most of these techniques work well with small simple models, but these are still
under active development and fairly impractical for real-world use. The community’s concentration
on theoretical soundness and Turing completeness mostly resulted in developments which leave
pragmatic needs unanswered.1 An alternative approach can be based on the fusion of VI and ideas
rooted in manufacturing.

2 Rapid Prototyping of Probabilistic Models

Similar problems to the above were encountered in manufacturing in the 1980s. The long and costly
development cycle of mechanical parts significantly hurt the process of innovation. This problem of
long development cycles was answered with Rapid Prototyping (RP), in which an engineer would
quickly fabricate scale models using 3D printing before building physical parts at scale. The process
of fabrication allows for quick development cycles and reduces development time and costs.

The equivalent of RP in probabilistic modelling can be built using the combination of recent ad-
vances in VI, stochastic optimisation, and advances in computer engineering. Exciting initial ideas
proposed in [16, 17] suggested the use of sampling-based variational inference to approximate the
intractable divergence in the implementation step of the pipeline above instead of bounding it. In
sampling-based variational inference we generate samples from the approximate posterior and eval-
uate the log likelihood at these samples, obtaining an unbiased estimator to the log evidence which
we optimise. Adaptive learning-rate stochastic optimisation is then used to optimise the objective in
a black-box setting, requiring no parameter tuning.

Sampling-based VI requires a lower level of familiarity with the literature but doesn’t answer some
of the key issues with the implementation step. Each change to the model at the end of each develop-
ment cycle still requires the calculation, implementation, optimisation, and testing of the objective
and its derivatives. This process is extremely time-wasteful and requires a significant amount of
engineering expertise. Even a tiny bug in the implementation can cost countless hours of debugging,
especially for complex models. However with developments in computer engineering from the last
couple of years, which have been widely adopted by the deep learning community, we can alleviate
this process considerably.

1The probabilistic programming community has recently started shifting towards more pragmatic solutions.
Exciting ideas discussed in [15] were developed in parallel to the ideas I rely upon in this paper. But the
framework in [15] was sadly developed from a different stand-point which would not allow the incorporation
of many of the insights below. This will be explained further in section 3.
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2.1 A New Pipeline

The computation and implementation of the variational objective’s derivatives is a time consuming
task, but also a mechanical one, which can be easily automated. Symbolic differentiation program-
ming languages such as Theano [18] have had tremendous success in deep learning, and have been
used to create building-blocks that can be combined together to create complex models (see [19] for
example). If used in VI together with sampling-based variational inference, we could simplify the
development cycle to a neat pipeline, akin to RP in manufacturing.

Combining these existing techniques I thus suggest a new VI development cycle. After obtaining
the data X and developing an initial generative model trying to capture the data’s distribution, we
choose approximating variational distributions trying to match the properties of the posterior as
before. Instead of bounding the divergence, calculating derivatives, implementing, optimising, and
testing these, we simply write down the generative model in a symbolic language,

var ω;

f = ...

X = f(ω);

We simulate T samples from the approximate posterior and propagate them down the generative
model,

ωt ∼ qθ(ω);
Xt = f(ωt);

We then evaluate the objective with the output of the generative model,

L(θ) ≈ 1

T

T∑
t=1

log p(Xt)−KL(qθ(ω)||p(ω)).

We symbolically differentiate the objective and evaluate the derivatives with the same samples,
obtaining a noisy but unbiased gradient estimate. Together with a stochastic optimiser, we are guar-
anteed to converge to an optimum [16, 20, 21, 22]. As before, in the fourth step we evaluate the
model, examining the probabilistic model’s ability to capture the distribution underlying our data
and adjust it accordingly. This cycle is repeated several times until we are satisfied with the model’s
performance.

As a concrete example we can look at [23], a probabilistic model of sequences of discrete variables
with non-linear embeddings. In Gal et al. [23] we used a Softmax likelihood and a Gaussian prior,
resulting in intractable model evidence. The original implementation using the Bohning bound
required thousands of lines of Python code, with 4 pages of derivations. Using the techniques above

1 import theano.tensor as T
2 m = T.dmatrix(’m’) # ... and other variational parameters
3 X = m + s * randn(N, Q) # these are the generative model’s variables
4 U = mu + L.dot(randn(M, K))
5 Kmm = RBF(sf2, l, Z)
6 Kmn = RBF(sf2, l, Z, X)
7 Knn = RBFnn(sf2, l, X)
8 KmmInv = T.matrix_inverse(Kmm)
9 A = KmmInv.dot(Kmn)

10 B = Knn - T.sum(Kmn * KmmInv.dot(Kmn), 0)
11 F = A.T.dot(U)+B[:,None]**0.5 * randn(N,K)
12 S = T.nnet.softmax(F) # model’s output - Softmax probabilities
13 KL_U, KL_X = get_KL_U(), get_KL_X() # these are the KL terms
14 LS = T.sum(T.log(T.sum(Y * S, 1)))
15 - KL_U - KL_X # and this is the lower bound we optimise
16 LS_func = theano.function([’’’inputs’’’], # compile the model
17 LS)
18 dLS_dm = theano.function([’’’inputs’’’], # and the derivatives
19 T.grad(LS, m))
20 # ... and optimise LS with RMS-PROP

Figure 1: Example Python code resulting from the new pipeline. Here, m, s, mu, and L are the
variational parameters, and the generative model S (the probabilities of the discrete variables) is a
function of latents X, U, and F. Our objective is LS.
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we managed to implement the generative model and inference in Theano [18] with the simplest
version implemented fully with 20 lines of code (fig. 1).

By almost completely avoiding the implementation step in the original development cycle, this new
pipeline makes VI more accessible to non-experts, requiring far less expertise and time. The pipeline
thus forms an invaluable steppingstone in our vision of automated statistics and scalable probabilistic
programming.

This combination of existing techniques might seem naive, but the pipeline opens the door to a series
of exciting new research problems in VI and engineering, which are studied next.

3 Emerging Challenges

There are many open problems to research to make this pipeline practical both from the VI per-
spective and the engineering perspective, with the development of new tools being a fundamental
necessity. Here I discuss the limitations of current tools and propose exciting new leads to research.
I will concentrate on Theano as the underlying engine for symbolic differentiation rather than al-
ternative ones. Theano is immensely popular within the deep learning community and considerable
amounts of resources have been invested in the engine itself and the surrounding ecosystem. Many
practical deep learning frameworks have been built on top of Theano which will allow us to combine
these with VI seamlessly (as explored in section 3.3). This is in contrast to the framework devel-
oped in [15] which does not allow us to leverage existing developments within the deep learning
community.

3.1 Existing Tools

Numerous difficulties arose during our implementation in [23], focusing our attention on the lack
of various tools in the field. The most prominent difficulty is the lack of appropriate symbolic
differentiation tools for many of the models often used in VI.

As a concrete example we can look at the symbolic differentiation of matrix inverses, which are
common in Gaussian approximating distributions. Theano and many other symbolic differentiation
frameworks build a graph of symbolic variables and operations on these, and then optimise the
graph to make its computations more efficient. Theano calculates the derivatives by propagating the
chain rule throughout the graph, making graph optimisation vital since naive evaluations would be
computationally too expensive.

However Theano and other common tools were built within the deep learning community and mostly
aimed at its needs. Even though matrix inverse differentiation is supported, current graph optimisa-
tions are not ideal for models requiring this operation. This results in slow models which are often
impractical. A similar problem exists with matrix determinants.

An additional engineering-directed difficulty is the lack of numerically stable techniques and effi-
cient approximations in the graph optimisation for such operations. Many “tricks-of-the-trade” are
used in VI implementations to avoid problems of numerical instability and to avoid large matrix
multiplications. These are missing from existing symbolic differentiation frameworks.

With the introduction of such tools it will become much easier to design efficient models, with much
smaller, readable, and extendible code-bases.

3.2 Black-box Variance Reduction

One of the major difficulties with sampling-based VI is estimator variance. Even though sampling-
based VI simplifies inference considerably, large estimator variance can make optimisation in-
feasible. In such cases variance reduction techniques are needed, but these often force us to re-
parametrise the model. The resulting re-parametrisation often leads to complicated inference and
code.

This difficulty suggests the need for black-box variance reduction techniques. Black-box variance
reduction techniques will be applied automatically to the symbolic graph without needlessly compli-
cating the generative model. This will allow users of the sampling-based VI pipeline to simplify the
development process by making estimator variance concerns irrelevant. A direct result is compact
and more readable generative models.
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Recent techniques proposed in [17, 20] set a good starting point for this.

3.3 Model Compositionality

Current research in VI is rather fragmented, and the implementation of existing published models
can take days if not weeks. In the deep learning community, however, many common models are
built-in into frameworks such as [19], and a vast number of published papers can be easily built from
these simpler building blocks, becoming themselves higher level building blocks. This speeds-up
the innovation cycle allowing fast-evolving model complexity. The Neural Queue forms a concrete
example of this. It is based on the Neural Turing Machine, which in turn is based on Recurrent
Neural Networks and simple deep networks as building blocks.

Thus, a last thread of open problems to research is the design of small VI building blocks. A unified
VI framework based on the tools above will become a cornerstone in the field, making VI accessible
to larger audiences similar to the BUGS project in 1989. With the recent framework casting many
deep learning tools as VI in Bayesian neural networks [24, 25, 26] we already have many building
blocks to start this endeavour with.
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