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Why does early stopping help?

Regularization = MAP inference
Limiting model capacity = Bayesian Occam’s razor

Cross-validation = Estimating marginal likelihood
Dropout = Integrating out spike-and-slab

Ensembling = Bayes model averaging?
Early stopping = ??

Gradient descent with random starts is a sampler

What is the implicit distribution of parameters after optimizing for t steps?

Initial distribution After 150 steps After 300 steps

Distributions (blue) implicitly defined by gradient descent on an objective (black).

•Starts as a bad approximation (prior dist)

•Ends as a bad approximation (point mass)

•Ensembling = taking multiple samples from dist

•Early stopping = choosing best intermediate dist

Cross validation vs. marginal likelihood

•What if we could evaluate marginal likelihood of implicit distribution?

•Could choose all hypers to maximize marginal likelihood

•No need for cross-validation?

Contribution: Variational Lower Bound

log p(x) ≥ −Eq(θ) [− log p(θ,x)]︸ ︷︷ ︸
Energy E[q]

−Eq(θ) [log q(θ)]︸ ︷︷ ︸
Entropy S[q]

Energy estimated from optimized objective function (training loss is NLL):

Eq(θ) [− log p(θ,x)] ≈ − log p(θ̂T ,x)

Entropy estimated by tracking change at each iteration:

−Eq(θ) [log q(θ)] ≈ S[q0] +

T−1∑
t=0

log
∣∣∣J(θ̂t)∣∣∣

Using a single sample!

Estimating change in entropy

• Inuitively: High curvature makes entropy decrease quickly

•Can measure local curvature with Hessian

•Approximation good for small step-sizes

Volume change given by Jacobian of optimizer’s operator:

S[qt+1]− S[qt] = Eqt(θt)
[
log
∣∣∣J(θt)∣∣∣]

Gradient descent update rule:

θt+1 = θt − α∇L(θ),
Has Jacobian:

J(θt) = I − α∇∇L(θt)
Entropy change estimated at a single sample:

S[qt+1]− S[qt] ≈ log |I − α∇∇L(θt)|

SGD with entropy estimate

1: input: Weight init scale σ0, step size α, negative log-likelihood L(θ, t)
2: initialize θ0 ∼ N (0, σ0ID)

3: initialize S0 =
D
2 (1 + log 2π) +D log σ0

4: for t = 1 to T do
5: St = St−1 + log |I− α∇∇L(θt, t)|
6: θt = θt−1 − α∇L(θt, t)
7: end for
8: output sample θT , entropy estimate ST

Computational Complexity

•Approximate bound: log p(x) & −L(θT ) + ST

•Determinant is O(D3)

•O(D) Taylor approximation using Hessian-vector products

•Scales linearly in parameters and dataset size

Example: Choosing when to stop

•Neural network on the
Boston housing dataset.

•SGD marginal likelihood es-
timate gives stopping crite-
rion without a validation set
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Example: Choosing number of hidden units

•Neural net on 50000 MNIST
digits

•Largest model has 2 million
params

•Gives reasonable estimates,
but cross-validation still bet-
ter

•Entropy bound over-
penalizes after long training
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Main Takeaways

•Optimization with random restarts implies nonparametric intermediate dists

•Early stopping chooses among these distributions

•Ensembling samples from them

•Can scalably estimate lower bound on model evidence during optimization

•Bound can be used for Langevin-dynamics recognition networks!

•All code at github.com/HIPS/maxwells-daemon

http://github.com/HIPS/maxwells-daemon/

