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Why does early stopping help?

Regularization = MAP inference
Limiting model capacity = Bayesian Occam’s razor
Cross-validation = Estimating marginal likelihood
Dropout = Integrating out spike-and-slab
Ensembling = Bayes model averaging?
Early stopping = 77

Gradient descent with random starts is a sampler

What is the implicit distribution of parameters after optimizing for ¢ steps?

Initial distribution After 150 steps After 300 steps

Early Stopping is Nonparametric
INTELLIGENT _ Variational Inference

Distributions (blue) implicitly defined by gradient descent on an objective (black).

e Starts as a bad approximation (prior dist)
e Ends as a bad approximation (point mass)
e Ensembling = taking multiple samples from dist

e Early stopping = choosing best intermediate dist

Cross validation vs. marginal likelihood

e What if we could evaluate marginal likelihood of implicit distribution?

e Could choose all hypers to maximize marginal likelihood

e No need for cross-validation?

Contribution: Variational Lower Bound
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Energy estimated from optimized objective function (training loss is NLL):
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Entropy estimated by tracking change at each iteration:
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Using a single samplel

Estimating change in entropy

e [nuitively: High curvature makes entropy decrease quickly
e Can measure local curvature with Hessian
e Approximation good for small step-sizes

Volume change given by Jacobian of optimizer's operator:
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Gradient descent update rule:
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Entropy change estimated at a single sample:
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SGD with entropy estimate

1 input: Weight init scale oy, step size «, negative log-likelihood L(6,t)
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~ end for

& output sample 07, entropy estimate Sy

Computational Complexity

e Approximate bound: log p(x) 2 —L(67) + St

e Determinant is O(D")

e O(D) Taylor approximation using Hessian-vector products

e Scales linearly in parameters and dataset size

Example: Choosing when to stop
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Example: Choosing number of hidden units
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Main Takeaways

e Optimization with random restarts implies nonparametric intermediate dists
e Early stopping chooses among these distributions

e Ensembling samples from them

e Can scalably estimate lower bound on model evidence during optimization
e Bound can be used for Langevin-dynamics recognition networks!

o All code at github.com/HIPS/maxwells-daemon


http://github.com/HIPS/maxwells-daemon/

