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Approximation using Weighted Kernel Density Estimatior

Goal.: sc%ll.e HP Baye§ian inference with pro.v.ab_le guarantee, | In general, we may not have a good guess for the support ot posterior. We » Verification on multimodal model. We compare the alternatives on the
> S'mP“C"FY- AppI!cabIe to many_proba 3_"'5’_C|C models, even W_'th o propose weighted kernel density estimator as the approximation to q(6). In mixture model : :
non-conjugate priors. Only require loglikelihood rather than its derivative. t-step, we have g; from last iteration, we derive the update rule from (1) 01~ N(0,07), 6~ N(0,09)
> Eiiﬂﬂ:g{ﬁgiLoeXinTj&?n:zzaﬁi?;,terior by kernel density estimation which Fea(0) = Zm 0 Ki(0 — ) x; ~ pN (01, 02) + (1 — p)N (01 + 65, 072)
' o | N where 0y =1, 00 =1, 0, = 2.5 and p = 0.5. The size of dataset is 1000.
» Stochasticity. Use a subset of the data each iteration. o = :xp( 7:8¢(01)) {67, i-1d a:(0), F | | -3
» Theoretical guarantee. Converges to the true posterior in terms of 2_i-1&xP(—7e8:(0))) o \ | & R | I
KL-divergence in rate O(\F) with m particles. where h > 0 is the bandwidth parameter and Kj(6) := 5K(0/h) is a 5| | Eo [ " | B
smoothing kernel. 5 2. . iy LLP
- SVI @)
Optimization View of Bayesian Inference Remark: 1) The update serves as an e-prox-mapping. 2) The sampling §E§%§E;énl gg\\\ﬂ .
procedure adjusts the support of intermediate estimation. 3) The computation ouf—pwp " g’_\ \J I
Given model ,D(X‘(g) and prior p(e) with the dataset X = {Xn n=L the of X does not need to evaluate Z := f qt(e) exp(_%gt(@))de numbe1(;rzofvisited1;;mples ) - numbe1r(;20fvisited S:gmples |
posterior of § € R? computed by Bayes’ rule o |
N . : : Total Variation Cross Entropy True posterior
p(0)]],_; p(xa|0) Particle Mirror Descent Algorithm :

p(0|X) =

0 N S | jl;
J The1 P(xa|0) p(6)d Particle Mirror Descent | I | I |

[Zellner(1988)] proposed that the posteriorl\j:ou_ld be viewed as the so{ution of Input: Data set X — {Xn},lyzlv prior p(0)

. 2. Qutput: posterior density estimator §r(6) 1 * ‘ | B
[(qg) = KL — | N L~ | U i | | B | |
min_ (9) (q(6) |[ p(0)) 2 | / q(0) log p(xx|0) d<9_, ;. Initialize 3,(8) = p(6) . I . I . I

o 4- for t — 17 2’ e T L 1 d o 2 s 1 05 o o5 1 15 2 2 45 a1 05 o0 05 1 15 2 2 s 1 w05 o o5 1 15 2 >0
5: Sample x; X PMD _3 One-Pass SMC Stochastic NPV

which is 1-strongly convex w.r.t. KL-divergence.

Stochastic Mirror Descent in Density Space i el S R ——~anenenen
Y ob 6. if Good p(6) is provided then 11 else » | I | | I | | I
The functional gradient VL(q) is defined as 7. {0} ioi.d m(0) when t =1 12 {0i 7~ q:(0) . | e ) e e
— : Tt )t Ve 1 I E s 0 L oo of P
L(g + €eh) = L(q) + € (VL(q), h), + O(¢?). B ozl " p(xe|0;)" e, Vi 12 i qfﬁf) V’.’(Q') pLxi|0i)™, 1 | . o
_ _ _ _ _ : . ¢ ,2" \v’/ OGS thl oo v | | B | = | B~
Randomly sample x; from X, the stochastic functional gradient of L(q) in Ly is i Smy, ~ =1 m, | I A I ~ I
t 10 Geya(0) 121”21 a; 8(6;) 5. Gea(0) = D0 ik (0 — 0) i | B < :
g:(0) = log(q(0)) — log(p(#)) — Nlog p(x:|). 16 end if - - s
The stochastic mirror descent algorithm iteratively solves 17. end for SVI Gibbs Sampling SGD Langevin
prox-mapping [Nemirovski et an.(2009)] . ) =y = » Verification on non-conjugate model. We conduct comparison with logistic
Gr+1(0) = Pg,(7:8t) = Argiilggyep {<q(‘9)77tgt(@)>L2 + KL(q(0)[|q:(9)) } EorcHca RN IIANIECES regression model on dataset MNIST8M 8 vs. 6 which contains about
which leads to update Theorem 1 Assume p(6) has the same support as the true posterior q*(6), 1.6M data points.
ge1(0) = q:(0) exp(—:2:(0))/ Z = %(9)1_%/3(9), (1) and the model ||p(X|(9)NHoo is bounded for any x. Then Yf(6) bounded and > Verific.ation on real-world applicatién: We conduct comparison with sparse
where 7 — f (0) exp(—:g:(0)) d8 is generally intractable integrable, with stepsize ~y; = 77 after m iteration, the PMD returns m Gaussian Processes model on predicting the year of songs. The dataset
= J PL™"t6t & Y | weighted particles such that contains 0.5M songs.
VT o 1
Error Tolerant Stochastic Mirror Descent 2 [1(G — g*, F)|] ~ o(ﬁ), T 0.04
Given € > 0 and g € L,, we define the e-prox-mapping of g as the set 0 | —E:bbﬂs:mgz
- - - - e pas e | 0.035
P(g) = {GeP :KL@llq) + (g, )1, < mm{KL(qu) (g, 30} + ¢ Theorem 2 With some mild asselmpt/onsl about kernel function, and.the p.((9) ol
Ge and p(x|0) are smooth enough, with stepsize v; ~ O(1/t), after \/m iteration, = D o5
Instead of solving prox-mapping exactly, we apply the updates the PMD returns weighted KDE such that g 02\ z _
q €t - 1 "o ---SoD GP
qt+1(6)) S Pﬁt(%gt)’ t=1,2,.... ‘E[KL(q*‘ |q)] ~ O(T) 01} \JK " g\rﬂe—Pass SMC
Recall the objective function is 1-strongly convex, we have the recurrence, " B I e T 0.0 —,PMD, I
vt < T’ ,yQ n Proof idea Denote Qm(e) —'m Z: 1("]((9 )Kh(e (9) we have number of visited samples 10’ number of \1/i(§ted samples 10
T[KL 1 — v )E[KL(q*|[q:)] + +—2—2 : —F - —
[KL(q™[|qe1)] < €0 4+ (1 — ) E[KL(q7(|q:)] 5 ;Eﬁ)n\:\ff)] o |w(0;)Kp(6, 0, )] g * Ki. The error can be decomposed as (1) Logistic Regression Sparse Gaussian Processes
Approsimation using Weighted Partcis C=E[30) - a0,
. . < El[q(f) — om(9)ll;
When the prior has the same support as posterior, based on the exact %t/—/ Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
solution (1), we approximate qg;,1(f) as a set of weighted particles L E ngm(aéz)a o i:rrg ()] Robust stochastic approximation approach to stochastic programming.
Z] ((9) B Zm &t+1 5(9) ;,m_} SIAM J. on Optimization, 19(4):1574-1609, January 2009.
t-+1 - =1 sampling error (variance
(1 atexp(—vgi(6) g™ g a P Hg ( . ) Zellner, Arnold.
;= ST atexp(—yig(6:))’ { }i—l ™~ P( ) T H - ‘-Om( ) o q( )Hl q* Optimal Information Processing and Bayes's Theorem.
One can simply update the set of working variables {c;}" ; in the algorithm. approximation error (bias) . The American Statistician, 42(4), November 1988.
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