

UNIVERSITY OF CAMBRIDGE

Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation

Thang D. Bui, José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato and Richard E. Turner

Deep Gaussian processes Generative model: x_n $f_l \sim \mathcal{GP}(0, k(., .))$ $h_{l,n} = f_l(f_{l-1}(\cdots f_1(x_n)))$ $y_n = g(x_n) = f_L(f_{L-1}(\cdots f_2(f_1(x_n)))) + \epsilon_n$ Deep GPs are: $n_{2,n}$ + multi-layer generalisation of Gaussian processes + equivalent to deep neural networks with infinitely wide hidden layers y_n NAdvantages: + Deep GPs are deep and nonparametric and can, + discover useful input warping or dimensionality compression and expansion

- \rightarrow automatic, nonparametric Bayesian kernel design
- + give a non-Gaussian functional mapping g
- + repair the damage done by using sparse approximations,
- + retain uncertainty over latent mappings and representations.

Open theoretical questions:

+ architecture: number of layers, hidden dimensions, covariance functions,

- + learnability/identifiability/prior knowledge,
- + efficient inference and learning.

Taxonomy of previous approaches Inducing point approaches Titsias/compression trick FITC EP * * our approach approx. EP Approximate no inter. latent var. hinference Damianou et al. variational 2^{**} Hensman et al. approx. variational no inter. latent var. hMAP Lawrence and Moore

 $p(h_l)$

where:

Approx

De

Incorpo

Momen

Inc

Memory

 $\mathbf{m} = \mathbf{r}$

\ 1

 $\mathbf{V} = \mathbf{V}$

where

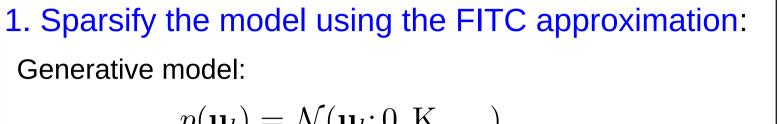
We compute \mathcal{Z} and its gradients using the probabilistic backpropagation algorithm, which propagates a moment-matched Gaussian through the network, then computes the gradients using chain rule in the backward step.

4. Hyperparameter optimisation using stochastic gradients:

- + Use Theano to compute the gradients of \mathcal{Z}

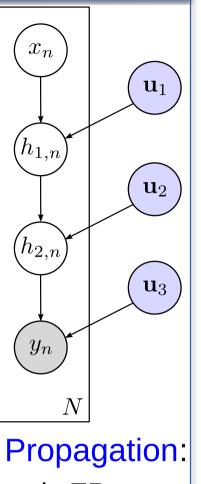
* in principle this could be done ** the lower bound of FITC-Variational is the same as in Damianou et al.

Proposed approach



$$p(\mathbf{u}_l) = \mathcal{N}(\mathbf{u}_l, 0, \mathbf{u}_l, \mathbf{u}_l)$$
$$\mathbf{u}_l, h_{l-1}) = \mathcal{N}(h_l; \mathbf{A}(h_{l-1})\mathbf{u}_l, \mathbf{B}(h_{l-1}) + \sigma_l^2)$$

$$A(h_{l-1}) = K_{h_{l-1}\mathbf{z}_{l}} K_{\mathbf{z}_{l}\mathbf{z}_{l}}^{-1}$$
$$B(h_{l-1}) = K_{h_{l-1}h_{l-1}} - K_{h_{l-1}\mathbf{z}_{l}} K_{\mathbf{z}_{l}\mathbf{z}_{l}}^{-1} K_{\mathbf{z}_{l}h_{l-1}}^{-1}$$



2. Approximate inference using stochastic Expectation Propagation: Stochastic EP EP

x. posterior	$q(heta) \propto p(heta) \prod_n g_n(heta)$	$q(heta) \propto p(heta) \prod_n g_n(heta)$
eletion	$q^{\setminus n}(heta) \propto q(heta)/g_n(heta)$	$q^{ackslash 1}(heta) \propto q(heta)/g(heta)$
orating data	$ ilde{q}(heta) \propto q^{\setminus n}(heta) p(y_n heta)$	$ ilde{q}(heta) \propto q^{ackslash 1}(heta) p(y_n heta)$
nt-matching	$\mathrm{KL}(\tilde{q}(\theta) q(\theta)) \to g_n(\theta)$	$\operatorname{KL}(\tilde{q}(\theta) q(\theta)) \to \overline{g}(\theta)$
clusion	$q(heta) \propto q^{ackslash n}(heta) g_n(heta)$	$q(heta) \propto q^{ackslash 1}(heta) ar{g}(heta)$
Jpdate		$g(\theta) \leftarrow g(\theta)^{1-\alpha} \bar{g}(\theta)^{\alpha}$
y complexity	$\mathcal{O}(NLM^2)$	$\mathcal{O}(LM^2)$

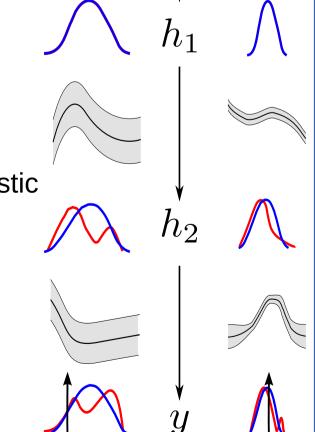
 \mathbf{V}^{1}

Shortcut for the moment maching step: -1 d log \mathcal{T}

$$\mathbf{n}^{\backslash 1} + \mathbf{V}^{\backslash 1} \frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{d} \mathbf{m}^{\backslash 1}}$$

$$\mathbf{V}^{\backslash 1} - \mathbf{V}^{\backslash 1} \left[\frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{d} \mathbf{m}^{\backslash 1}} \left(\frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{d} \mathbf{m}^{\backslash 1}} \right)^{\mathrm{T}} - 2 \frac{\mathrm{d} \log \mathcal{Z}}{\mathrm{d} \mathbf{V}^{\backslash 1}} \right]$$
e:

$$\mathcal{Z} = \int_{\mathbf{u}_{1:L}} p(y|\mathbf{x}, \mathbf{u}_{1:L}) q^{\setminus 1}(\mathbf{u}_{1:L})$$



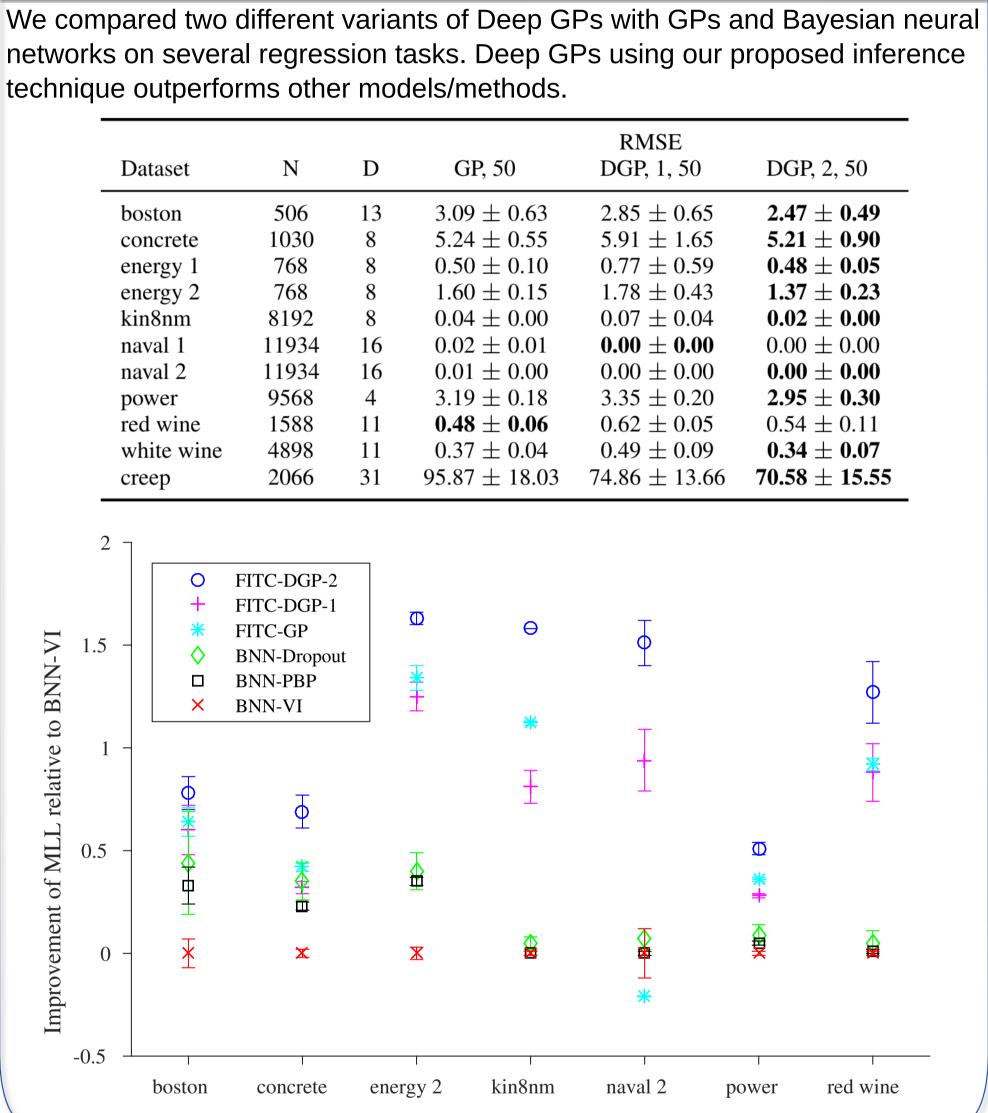
Before

After

+ Optimise the EP energy, but do not wait for EP inner loop to converge + Use the median trick and ADF for initialisation

+ Use minibatch-based stochastic optimisation, we use Adam

Experimental results

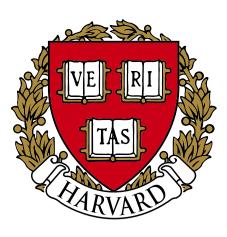


Summary and future work

Our work propose
+ extends probabi
+ combines induci
efficient Stochastic
+ is fast and easy
+ obtains state of

Current work includes:

- + parallel implementation
- + large scale experiment on big datasets
- + comparison to variational free-energy schemes
- + extending to classification and latent variable models
- + investigate various network architectures.



Ν	D	GP, 50	RMSE DGP, 1, 50	DGP, 2, 50
506	13	3.09 ± 0.63	2.85 ± 0.65	$\textbf{2.47} \pm \textbf{0.49}$
1030	8	5.24 ± 0.55	5.91 ± 1.65	$\textbf{5.21} \pm \textbf{0.90}$
768	8	0.50 ± 0.10	0.77 ± 0.59	$\textbf{0.48} \pm \textbf{0.05}$
768	8	1.60 ± 0.15	1.78 ± 0.43	1.37 ± 0.23
8192	8	0.04 ± 0.00	0.07 ± 0.04	$\textbf{0.02} \pm \textbf{0.00}$
11934	16	0.02 ± 0.01	$\textbf{0.00} \pm \textbf{0.00}$	0.00 ± 0.00
11934	16	0.01 ± 0.00	0.00 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$
9568	4	3.19 ± 0.18	3.35 ± 0.20	$\textbf{2.95} \pm \textbf{0.30}$
1588	11	$\textbf{0.48} \pm \textbf{0.06}$	0.62 ± 0.05	0.54 ± 0.11
4898	11	0.37 ± 0.04	0.49 ± 0.09	0.34 ± 0.07
2066	31	95.87 ± 18.03	74.86 ± 13.66	$\textbf{70.58} \pm \textbf{15.55}$
FITC-DGP-2				

s an approximate inference scheme for Deep GPs, that ilistic backpropagation for Bayesian neural networks ing point based sparse GP approximation with the memory c Expectation Propagation to implement

- the art regression results.

For more, see http://arxiv.org/abs/1511.03405