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ABSTRACT
Recent techniques for training deep generative models are based on coax-

ing pairs of sample generating systems into agreement. Methods such as
stochastic variational inference (as used in variational auto-encoders), de-
noising (as used in denoising auto-encoders), and contrastive divergence (as
used to train Restricted Boltzmann Machines) all fit nicely under this inter-
pretation. We formally develop this point of view, which provides a unified
framework in which to compare and contrast many approaches to training
deep generative models. We hope our effort might help other researchers
compress their understanding of methods in this domain, and thus avoid get-
ting overwhelmed as they continue to proliferate.

THE MAIN IDEA
• We step back slightly, and extend the standard variational free energy

bound to a KL divergence between distributions q(x, τ) and p(x, τ).

– x denotes an “observable” variable.

– τ denotes one or more latent variables zi, i.e. τ ≡ {z0, ..., zn}.

• For this, we incorporate the distribution D over x ∈ X into the infer-
ence model q(τ |x).

– This produces q(x, τ) ≡ D(x)q(τ |x).

• The generation model is given by p(x, τ) ≡ p(x|τ)p(τ).

– This is the same as in the “standard” setting.

• By considering a bound on the joint data/inference/generation system,
we can more easily assimilate diverse techniques for training deep gen-
erative models into a shared framework.

– This contrasts with the more typical view, which considers
bounding log p(x) separately for each x ∈ X .

USING KL(q || p) TO BOUND Eq(x) log p(x)
To begin, assume distributions q(x, z0..., zn) and p(x, z0, ..., zn) over vari-
ables {x, z0, ..., xn}. For these distributions, we can say:

KL(q(x, z0, ..., xn) || p(x, z0, ..., zn)) = E
q(x,z0,...,zn)

[
log

q(x, z0, ..., zn)

p(x, z0, ..., xn)

]
= E

q(x)

[
log

q(x)

p(x)
+ E

q(z0,...,zn|x)

[
log

q(z0, ..., zn|x)
p(z0, ..., zn|x)

]]
=KL(q(x) || p(x)) + E

q(x)

[
KL(q(z0, ..., zn|x) || p(z0, ..., zn|x))

]
≥KL(q(x) || p(x)), i.e. E

q(x)
[log q(x)− log p(x)]

So, if we can compute KL(q || p)− Eq(x) [log q(x)], we can compute:

KL(q(x, z0, ..., zn) || p(x, z0, ..., zn))− E
q(x)

[log q(x)] ≥ E
q(x)

[− log p(x)]
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Left: The standard variational autoencoder – an inference model q(z|x) is
used to approximate p(z|x) to train the generator p(x, z) = p(x|z)p(z).
Right: The method of Sohl-Dickstein et al. (ICML 2015) – a fixed reverse
process q goes from q(x0) ≡ D(x0) to a prior q(xT ) via diffusion steps.
Both: These methods train p to match q, by minimizing KL(q || p).

DENOISING AUTOENCODERS
TLDR: Define a prior p(z) = ED(x) q(z|x) by “convolving” the (noisy)
encoder q(z|x) with the data distribution D. Then, use SGVB to train the
directed generative model p(x) = Ep(z) p(x|z).
Details: Basic DAE training minimizes KL(q || p) by gradient descent on:

∇q KL(q(x, z) || p(x, z)) = ...

= E
q(x,z)

[
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p(x|z) −∇q log

(
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E
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]
(∇p is easy to get from this)

• DAEs minimize KL(q || p) just by minimizing reconstruction error.

IMPORTANCE-WEIGHTED AUTOENCODERS
With q(x, z) ≡ D(x)q(z|x) and p(x, z) ≡ p(x|z)p(z), we define qkp(z|x)

by sampling {z1, ..., zk} from q(z|x), then resampling {z1, ..., zk} using the
NIS weights {w1, ..., wk} for sampling from p(z|x) via q(z|x). I.e.:

wi =

p(zi|x)
q(zi|x)∑k

j=1
p(zj |x)
q(zj |x)

=

p(x|zi)p(zi)
q(zi|x)∑k

j=1
p(x|zj)p(zj)

q(zj |x)

This permits a variational bound on log p(x), using samples from qkp(z|x):

log p(x) ≥ E
(zi,wi)∼qkp(zi|x)

[
log

p(x|zi)p(zi)
wiq(zi|x)

]
Sample k zs at a time and marginalize over resampling from {z1, ..., zk}:

log p(x) ≥ E
{z1,...,zk}∼q(z|x)

[
k∑

i=1

wi log
p(x|zi)p(zi)
wiq(zi|x)

]
(1)

For each xi/wi, the log-ratio in Eq. 1 simplifies to (see paper for algebra):

log
p(x|zi)p(zi)
wiq(zi|x)

= log

 k∑
j=1

p(x|zj)p(zj)
q(zj |x)

 (2)

Using Eq. 2 and knowing
∑

i wi = 1, we can rewrite the bound in Eq. 1:

log p(x) ≥ E
{z1,...,zk}∼q(z|x)

[
log

(∑
zi

p(x|zi)p(zi)
q(zi|x)

)]

This variational bound based on the “meta distribution” qkp reproduces the
bounds for Reweighted Wake-Sleep and Importance-Weighted Autoencoders
(see paper for refs). Using an NIS correction towards p(z|x), RWS and
IWAEs put a tighter bound on log p(x) than q(z|x) provides on its own.

CONTRASTIVE DIVERGENCE FOR RBMS
TLDR: Define a prior p(zk) = Eq(xk,zk−1,...,z0,x0) q(zk|xk, zk−1, ..., z0, x0)
by “convolving” q with D. Then, use policy gradient to train the directed
generative model p(x) = Ep(zk,xk,...,x1,z0) p(x|z). Use tied weights in q/p.
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