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Abstract

Recent techniques for training deep generative models are based on coaxing pairs of sam-
ple generating systems into agreement. Methods such as stochastic variational inference
(as used in variational auto-encoders), denoising (as used in denoising auto-encoders), and
contrastive divergence (as used to train Restricted Boltzmann Machines) all fit nicely un-
der this interpretation. We formally develop this point of view, which provides a unified
framework in which to compare and contrast many approaches to training deep generative
models. We hope our effort might help other researchers compress their understanding of
methods in this domain, and thus avoid getting overwhelmed as they proliferate.

1 Minimizing KL(q || p) – a useful thing to do

The KL-divergence KL(q || p) can provide a convenient upper bound on the expected negative log-likelihood
of any variable x in any generative model p for which we can compute the joint log-density log p(x, etc),
where “etc” indicates an arbitrary collection of additional variables. The expectation can be taken w.r.t. any
distribution, e.g. D(x), over x. That is, KL(q || p) can be used to upper bound:

E
D(x)

[
− log

(
E

etc∼ p(etc)

[
p(x|etc)

])]
(1)

This bound lets us perform maximum likelihood inference in a wide range of settings. The bound depends
on an auxiliary distribution q(x, etc). It requires independent samples from q(x, etc) and requires computing
log q(etc|x). For practical purposes, we also need to compute gradients of log p(x, etc) and log q(etc|x) with
respect to their parameters. These are the only requirements for p and q.

Computations for this bound are equivalent to those for the variational free energy. However, our derivation
differs from typical derivations of the variational free energy, particularly in our focus on behavior of the
full joint distributions p(x, etc) and q(x, etc). While standard interpretations of the variational free energy
readily suggest methods like the variational auto-encoders in [10, 11], they are less immediately helpful in
understanding other methods, such as those in [13] and [12]. Our derivation brings these methods into a
unified framework, and makes it easy to interpret denoising auto-encoders, GSNs, etc. as members of the
same family of methods. Work in [5, 1, 6] can be interpreted as applications of our KL-based bound, using
a “meta” auxiliary distribution formed by applying a normalized importance sampling correction to q.1

1Normalized importance sampling – in the context we consider – can be interpreted as sampling from an infinite
mixture of discrete, finite-cardinality “resampling distributions”. See Section 3 for further discussion.

1



1.1 Deriving the KL-based log-likelihood bound

To begin, assume distributions q(x0, ..., xn) and p(x0, ..., xn) over variables {x0, ..., xn}. We can say:

KL(q(x0,..., xn) || p(x0, ..., xn)) = E
q(x0,...,xn)

[
log

q(x0, ..., xn)

p(x0, ..., xn)

]
= E
q(x0)

[
E

q(x1,...,xn|x0)

[
log

q(x0)q(x1, ..., xn|x0)

p(x0)p(x1, ..., xn|x0)

]]
= E
q(x0)

[
log

q(x0)

p(x0)
+ E
q(x1,...,xn|x0)

[
log

q(x1, ..., xn|x0)

p(x1, ..., xn|x0)

]]
= KL(q(x0) || p(x0)) + E

q(x0)

[
E

q(x1,...,xn|x0)

[
log

q(x1, ..., xn|x0)

p(x1, ..., xn|x0)

]]
= KL(q(x0) || p(x0)) + E

q(x0)

[
KL(q(x1, ..., xn|x0) || p(x1, ..., xn|x0))

]
(2)

≥KL(q(x0) || p(x0)) (3)
Note that we chose our subscripts arbitrarily, so we can also say:

KL(q(x0, ..., xn) || p(x0, ..., xn)) ≥ arg max
i

[
KL(q(xi) || p(xi))

]
(4)

1.2 Bounding expected log-likelihood for x ∼ D

Now, consider relabelling the distributions q and p to look like: q(x, z0, ..., zn) and p(x, z0, ..., zn). If the
marginal q(x) matches a particular distribution D, i.e. ∀x : q(x) = D(x), then Eq. 2 and Eq. 4 let us say:

KL(q(x, z0,..., zn) || p(x, z0, ..., zn)) = ...

= KL(D(x) || p(x)) + E
D(x)

[
KL(q(z0, ..., zn|x) || p(z0, ..., zn|x))

]
≥ E
D(x)

[
logD(x)

]
+ E
D(x)

[
− log p(x)

]
(5)

Thus, if we can draw independent samples from q(x, z0, ..., zn), and if the log-densities log q(z0, ..., zn|x)

and log p(x, z0, ..., zn) are tractable – we won’t optimize or evaluate q(x) , D(x), then we can minimize a
bound on ED(x)

[
− log p(x)

]
by minimizing KL(q(x, z0, ..., zn) || p(x, z0, ..., zn))− ED(x)

[
logD(x)

]
.

Monte Carlo minimization of this KL-based bound on ED(x)

[
− log p(x)

]
simply repeats two steps:

1. Sample (x, z0, ..., zn) from q(x, z0, ..., zn) , D(x)q(z0, ..., zn|x).
2. Do a descent step to reduce: log q(z0, ..., zn|x)− log p(x, z0, ..., zn).

Many approaches to training deep generative models are based on variants of this objective.

2 Denoising auto-encoders and GSNs

To bring denoising auto-encoders [4] and GSNs [3] into the KL bound framework, we first modify p and q
from the previous subsection by incorporating additional latent variables z̄ into q, and by defining:

p(z̄) , E
q(x,z1,...,zn)

[
q(z̄|x, z0, ..., zn)

]
= q(z̄) (6)

We also make some basic assumptions about p and q:
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• We can draw independent samples from q(x, z1, ..., zn, z̄).
• We can compute log q(z1, ..., zn|x) and log p(x, z1, ..., zn|z̄).

The key changes from the previous section are that we require log p(x, z1, ..., zn|z̄) rather than the full joint
log p(x, z1, ..., zn, z̄), and that we require log q(z1, ..., zn|x) rather than log q(z1, ..., zn, z̄|x).

Putting this all together, we can say:
KL(q(x, z0,..., zn, z̄) || p(x, z0, ..., zn, z̄)) = ...

= E
q(x,z0,...,zn,z̄)

[
log

q(x, z0, ..., zn|z̄)q(z̄)
p(x, z0, ..., zn|z̄)p(z̄)

]
= E
q(x,z0,...,zn,z̄)

[
log
D(x)q(z0, ..., zn, z̄|x)

p(x, z0, ..., zn|z̄)q(z̄)

]
= E
q(x,z0,...,zn,z̄)

[
log
D(x)q(z0, ..., zn, z̄|x)

p(x, z0, ..., zn|z̄)
− log

(
E
q

[
q(z̄|x̂, ẑ0, ..., ẑn)

])]
(7)

≥ E
D(x)

[
logD(x)

]
+ E
D(x)

[
− log p(x)

]
(8)

It’s not immediately clear how the − log q(z̄) term in Eq. 7 will affect optimization of this bound. However,
with some algebra (given in the supplementary material), we can see that:

∇q KL(q(x, z0, ..., zn, z̄) || p(x, z0, ..., zn, z̄)) = ...

= E
q(x,z0,...,zn,z̄)

[
∇q log

D(x)q(z0, ..., zn, z̄|x)

p(x, z0, ..., zn|z̄)
−∇q log

(
E
q

[
q(z̄|x̂, ẑ0, ..., ẑn)

])]
= E
q(x,z0,...,zn,z̄)

[
∇q log

q(z0, ..., zn|x)

p(x, z0, ..., zn|z̄)

]
(9)

Here, we use∇q to indicate differentiation w.r.t. the parameters of q, and we assume that the “reparametriza-
tion trick” is used to construct q(x, z0, ..., zn, z̄) using D(x) followed by a product of conditionals.2

Thus, we can minimize a KL-based bound on ED(x)[− log p(x)] by repeating two steps:

1. Sample (x, z0, ..., zn, z̄) from q(x, z0, ..., zn, z̄) , D(x)q(z0, ..., zn|x)q(z̄|z0, ..., zn, x).
2. Take a step to reduce: log q(z0, ..., zn|x)− log p(x, z0, ..., zn|z̄).

Most importantly, the “non-parametric” definition of q(z̄) and p(z̄) in Eq. 6 causes gradients from distribu-
tions over z̄ to disappear from the optimization process. However, due to this “non-parametric” definition,
the bound may become degenerate.3 Nonetheless, we can still generate samples from D by starting with a
single x ∼ D and then alternating between sampling z̄ ∼ q(z0, ..., zn, z̄|x) and x ∼ p(x, z0, ..., zn|z̄). If
KL(q || p) = 0, this process will sample from p(x) = D(x) because the marginals over x and z̄, and the
conditionals x|z̄ and z̄|x, must be the same in p and q for KL(q || p) = 0 to hold.4

From this point of view, when training a denoising auto-encoder, one is minimizing the divergence KL(q || p)
between the encoder distribution q and decoder distribution p. The prior p(z̄) in the decoder is defined non-
parametrically by convolving the encoder with the data distribution D, which also ensures that the encoder
joint q(x, z0, ..., zn, z̄) has marginal q(x) = D(x). The required entropy maximization in the encoder (see
gradients in Eq. 9) is obtained by construction, by adding noise to the encoder. Using a noisy encoder can
also help to avoid degenerate posteriors p(z̄|x), which are not prevented by the non-parametric prior p(z̄).

2The reparametrization trick conveniently routes q’s gradients around the sampling required for the expectations.
3The prior p(z̄) can partition into islands of mass, with each island generating a particular point in the training set.
4Additional assumptions – minor compared to KL(q || p) = 0 – are required for this to be entirely correct [3, 4].
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3 Reweighted Wake-Sleep and IWAEs use NIS Estimates of KL(q || p)

We now show that the Importance Weighted Auto-encoder objective described in [6] is equivalent to stochas-
tic variational inference with a proposal distribution corrected towards the true posterior via normalized im-
portance sampling. This objective has also appeared as a reweighted form of Wake-Sleep [8] – first in [5]
and later in [1].5 We assume distributions q(x, z) and p(x, z) over variables x and z, where we can easily
sample and evaluate q(z|x), p(x|z), and p(z). We procedurally define a distribution qkp(z|x) by drawing k
independent samples {z1, ..., zk} from q(z|x), and then resampling from {z1, ..., zk} in proportion to the
normalized importance sampling weights {w1, ..., wk} for sampling p(z|x) via q(z|x). These weights are:

wi =

p(zi|x)
q(zi|x)∑k
j=1

p(zj |x)
q(zj |x)

=

p(x|zi)p(zi)
q(zi|x)∑k

j=1
p(x|zj)p(zj)
q(zj |x)

(10)

We can now write a KL-based bound on log p(x), using samples from the meta distribution qkp(z|x):

log p(x) ≥ E
(zi,wi)∼qkp(zi|x)

[
log

p(x|zi)p(zi)
wiq(zi|x)

]
(11)

Because sampling wi from qkp requires sampling k − 1 other zs from q(z|x), we might as well sample k zs
at a time and then analytically marginalize over the resampling from {z1, ..., zk}. This produces the bound:

log p(x) ≥ E
{z1,...,zk}∼q(z|x)

[
k∑
i=1

wi log
p(x|zi)p(zi)
wiq(zi|x)

]
(12)

where {z1, ..., zk} ∼ q(z|x) indicates independently sampling k zs from q(z|x), and the wi are computed
according to Eq. 10. Now, consider the log-ratio in Eq. 12. For any xi/wi, we can simplify this to:

log
p(x|zi)p(zi)
wiq(zi|x)

= log
p(x|zi)p(zi)(

p(x|zi)p(zi)
q(zi|x)∑k

j=1

p(x|zj)p(zj)
q(zj |x)

)
q(zi|x)

= log

 k∑
j=1

p(x|zj)p(zj)
q(zj |x)

 (13)

where the rightmost term in Eq. 13 is the same for all zi in the sampled set {z1, ..., zk}. Because we use
normalized importance sampling, we know

∑k
i=1 wi = 1, which lets us rewrite the bound in Eq. 12 as:

log p(x) ≥ E
{z1,...,zk}∼q(z|x)

[
log

(∑
zi

p(x|zi)p(zi)
q(zi|x)

)]
(14)

Thus, by optimizing the standard variational bound in Eq. 12 using samples from qkp – which repeatedly per-
forms k-sample normalized importance sampling from p(z|x) via q(z|x) – we reproduce the optimizations
described in [5, 1, 6]. Useful properties of this bound, e.g. how its tightness and variance change with k,
stem directly from known properties of normalized importance sampling and the variational free-energy.

4 Discussion

In this short paper, we developed a point of view which provides a conceptually parsimonious framework in
which to compare and contrast many recent approaches to structuring and training deep generative models.
Describing models and training methods within this framework should make it easier to see where they
truly differ, and where their apparent differences are merely superficial. Due to space constraints, we place
discussion of RBMs and Contrastive Divergence [7, 9] in the supplementary material.

5Here, we temporarily disregard the “sleep phase q-update” described in [5]. This aspect of reweighted wake-sleep
was not considered in [1]. We discuss this point further in the supplementary material.
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[3] Yoshua Bengio, Éric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski. Deep generative
stochastic networks trainable by backprop. In International Conference on Machine Learning (ICML),
2014.

[4] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders as
generative models. In Advances in Neural Information Processing Systems (NIPS), 2013.

[5] Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In International Conference on Learning
Representations (ICLR), 2015.

[6] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted auto-encoders.
arXiv:1509.00519v1 [cs.LG], 2015.

[7] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural Com-
putation, 14:1771–1800, 2002.

[8] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The wake-sleep algorithm for
unsupervised neural networks. Science, 268:1158–1161, 1995.

[9] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

[11] Danilo Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning (ICML), 2014.

[12] Tim Salimans, Diederik P Kingma, and Max Welling. Markov chain monte carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning (ICML), 2015.

[13] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning
(ICML), 2015.

5



5 Supplementary Material

5.1 Additional Material for Section 1 (General KL bounds)

Some discussion of how, e.g., the time-reversible stochastic process investigated in [13] fits into the KL-
based bound framework is available in [2]. In the future, we plan to combine the material from [2] with
material in the current paper, to present a comprehensive view of our ideas.

5.2 Additional Material for Section 2 (DAEs and GSNs)

From Section 2, we know that:

KL(q(x, z0,..., zn, z̄) || p(x, z0, ..., zn, z̄)) = ...

= E
q(x,z0,...,zn,z̄)

[
log
D(x)q(z0, ..., zn, z̄|x)

p(x, z0, ..., zn|z̄)
− log

(
E
q

[
q(z̄|x̂, ẑ0, ..., ẑn)

])]
(15)

≥ E
D(x)

[
logD(x)

]
+ E
D(x)

[
− log p(x)

]
where Eq. 15 comes from our definition of:

log p(z̄) , log

(
E

q(x,z1,...,zn)

[
q(z̄|x, z0, ..., zn)

])
= log q(z̄) (16)

We can directly compute the gradient of− log
(
Eq
[
q(z̄|x̂, ẑ0, ..., ẑn)

])
in Eq. 15 with respect to (parameters

of) the distribution q. We begin by defining y , {z0, ..., zn}, which lets us write:

log

(
E

q(x,y)

[
q(z̄|x, y)

])
= log

∑
(x,y)

q(x, y)q(z̄|x, y)


∇q log

(
E

q(x,y)

[
q(z̄|x, y)

])
=∇q log

∑
(x,y)

q(x, y)q(z̄|x, y)


** define: f(x, y) , log q(x, y)q(z̄|x, y) **

∇q log

(
E

q(x,y)

[
q(z̄|x, y)

])
=∇q log

∑
(x,y)

ef(x,y)


=
∑
(x,y)

(
ef(x,y)∑

(x̂,ŷ) e
f(x̂,ŷ)

∇qf(x, y)

)

=
∑
(x,y)

(
q(z̄|x, y)q(x, y)∑

(x̂,ŷ) q(z̄|x̂, ŷ)q(x̂, ŷ)
∇q log q(z̄|x, y)q(x, y)

)

= E
q(x,y|z̄)

[
∇q log q(z̄|x, y) +∇q log q(x, y)

]
(17)
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Now, we can write the gradient of the full objective in Eq. 15 with respect to q as:

∇q KL(q(x, y, z̄) || p(x, y, z̄)) = ...

= E
q(x,y,z̄)

[
∇q log

q(y, z̄|x)

p(x, y|z̄)
−∇q log

(
E

q(x̂,ŷ)

[
q(z̄|x̂, ŷ)

])]
= E
q(x,y,z̄)

[
∇q log

q(y|x)q(z̄|x, y)

p(x, y|z̄)
− E
q(x̂,ŷ|z̄)

[
∇q log q(z̄|x̂, ŷ) +∇q log q(x̂, ŷ)

]]
= E
q(z̄)

[
E

q(x,y|z̄)

[
∇q log q(y|x) +∇qq(z̄|x, y)−∇q log p(x, y|z̄)

]]
− (18)

E
q(z̄)

[
E

q(x,y|z̄)

[
∇q log q(z̄|x, y) +∇q log q(x, y)

]]
(19)

= E
q(z̄)

[
E

q(x,y|z̄)
[∇q log q(y|x)−∇q log p(x, y|z̄)]

]
(20)

Here, the∇q log q(z̄|x, y) terms in Eqns. 18 and 19 cancel each other, and the∇q log q(x, y) term in Eq. 19
cancels itself because it appears in an expectation over q(x, y). The term ∇q log p(x, y|z̄) in Eq. 20 is
relevant due to the influence of q on the values of y and z (we use q(x) , D(x), so ∂x/∂q = 0).

5.3 Additional Material for Section 3 (NIS and IWAEs)

For practical reasons, one may prefer to optimize an alternative objective to Eq. 14:

log p(x) ≥ E
{z1,...,zk}∼q(z|x)

 k∑
i=1

p(x|zi)p(zi)
q(zi|x)∑k

j=1
p(x|zj)p(zj)
q(zj |x)

log

(
p(x|zi)p(zi)
q(zi|x)

) (21)

which has the same gradient w.r.t. p and q as Eq. 14 when we treat the normalized importance weights as
constant w.r.t. p and q. The difference between the values of Eq. 14 and Eq. 21 is actually just the entropy
of the discrete resampling distribution over the set {x1, ..., xk}. We now verify these properties.

Gradient equivalence – with fi , log p(x|zi)p(zi)
q(zi|x) :

** Eq. 14 ** ∇q log

(
k∑
i=1

efi

)
=

k∑
i=1

(
efi∑k
j=1 e

fj
∇q log

(
efi
))

** Eq. 21 **

1∑k
j=1 e

fj
∇q

(
k∑
i=1

efi

)
=

k∑
i=1

(
efi∑k
j=1 e

fj
∇q log

(
efi
))

k∑
i=1

∇qefi∑k
j=1 e

fj
=

k∑
i=1

(
efi∑k
j=1 e

fj

1

efi
∇qefi

)
k∑
i=1

∇qefi∑k
j=1 e

fj
=

k∑
i=1

∇qefi∑k
j=1 e

fj
=

k∑
i=1

(
efi∑k
j=1 e

fj
∇qfi

)
(22)
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Entropy difference – with fi , log p(x|zi)p(zi)
q(zi|x) and with E(w1, ..., wk) as the resampling entropy:

log

(
k∑
i=1

efi

)
− E(w1, ..., wk) =

k∑
i=1

(
efi∑k
j=1 e

fj
log
(
efi
))

−E(w1, ..., wk) =

k∑
i=1

 efi∑k
j=1 e

fj

log
(
efi
)
− log

 k∑
j=1

efj


E(w1, ..., wk) =−

k∑
i=1

(
efi∑k
j=1 e

fj
log

efi∑k
j=1 e

fj

)
(23)

By resampling entropy, we mean the entropy of the resampling distribution over {z1, ..., zk}.

5.4 A Discussion of Contrastive Divergence and RBMs

Given an RBM with parameters w, define q as the RBM’s Gibbs chain initialized from distribution D(x0)
over x0 and run for k steps, and define p as the RBM’s Gibbs chain initialized from distribution p(xk) over
xk and run for k steps. Also define the k-step trajectory τ , {x0, z0, ..., xk} generated by running q starting
from x0 ∼ D(x0). With these definitions we write:

KL(q || p) = E
q(τ)

[
log

q(τ)

p(τ)

]
(24)

=
∑
τ

q(τ) log
q(τ)

p(τ)
(25)

∇w KL(q || p) =
∑
τ

(
∇wq(τ) log

q(τ)

p(τ)
+ q(τ)∇w log

q(τ)

p(τ)

)
(26)

=
∑
τ

(
q(τ)∇w log q(τ) log

q(τ)

p(τ)
+ q(τ)∇w log

q(τ)

p(τ)

)
(27)

=
∑
τ

q(τ)

(
∇w log q(τ) log

q(τ)

p(τ)
+∇w log

q(τ)

p(τ)

)
(28)

= E
q(τ)

[
∇w log q(τ) log

q(τ)

p(τ)
+∇w log

q(τ)

p(τ)

]
(29)

= E
D(x)

[
E

q(τx|x)

[
∇w log q(τx|x)

(
log

q(τx|x)

p(τx|x)
+ log

D(x)

p(x)

)]]
+

E
q(τ)

[
∇w log

q(τ)

p(τ)

]
** note: log

D(x)

p(x)
is like a baseline in RL ** (30)

= E
D(x)

[
E

q(τx|x)

[
∇w log q(τx|x) log

q(τx|x)

p(τx|x)

]]
+ E
q(τ)

[
∇w log

q(τ)

p(τ)

]
(31)

We get from Eq. 29 to Eq. 30 by the definition of q(τ) , D(x)q(τx|x), and by the assumption that
∇w logD(x) = 0. Note that the first expectation in Eq. 31 goes to 0 as q runs for steps k → ∞. I.e. for
an infinitely deep encoder-decoder pair q/p with shared weights between models and layers, the encoder
samples from the exact posterior of the decoder, when the decoder’s prior p(xk) is defined as the marginal
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over x in the RBM’s Gibbs chain. A proof of this statement is given in [9], by Hinton et al. We use w to
indicate the RBM’s parameter matrix, and we elide bias terms to reduce notational clutter.

Analogous to our treatment of denoising auto-encoders, we consider a prior given by:6

p(xk) ,
∑
τ:k

D(x0)q(z0|x0)q(x1|z0)q(z1|x1) ... q(xk|zk−1) (32)

where τ:k indicates the truncated trajectory τ:k , {x0, z0, ..., xk−1, zk−1}. This is just the marginal q(xk)
in the trajectory distribution q(τ). With this definition of p(xk), we can see that:

log
q(τ)

p(τ)
= log

q(xk)q(x0, z0, ..., xk−1, zk−1|xk)

p(xk)p(zk−1|xk)p(xk−1|zk−1) ... p(x0|z0)
= log

q(xk)q(x0, z0, ..., xk−1, zk−1|xk)

p(xk)p(x0, z0, ..., zk−1|xk)

From our work with denoising auto-encoders in Section 2, we know that this becomes:

log
D(x0)q(z0, ..., xk−1, zk−1, xk|x0)

q(xk)p(x0, z0, ..., zk−1|xk)
= log

D(x0)

q(xk)
+ log

q(z0, ..., xk−1, zk−1, xk|x0)

p(x0, z0, ..., zk−1|xk)
(33)

We can thus write:

∇w log
q(τ)

p(τ)
=∇w log

D(x0)

q(xk)
+∇w log

q(z0, ..., xk−1, zk−1, xk|x0)

p(x0, z0, ..., zk−1|xk)

= −∇w log q(xk) +∇w log
q(z0, ..., xk−1, zk−1, xk|x0)

p(x0, z0, ..., zk−1|xk)
(34)

Using the gradients in Eq. 34, we can rewrite the full KL objective’s gradients from Eq. 31 as:

∇w KL(q || p) = ... (35)

E
D(x)

[
E

q(τx|x)

[
(∇w log q(τx|x)) log

q(τx|x)

p(τx|x)

]]
+ E
q(τ)

[
∇w log

q(z0, x1, ..., , xk|x0)

p(x0, z0, ..., zk−1|xk)

]
where the gradient term Eq(τ)[−∇w log q(xk)] from Eq. 34 has disappeared through self-cancellation. This
cancellation occurs because xk ∈ {x0, z0, ..., xk} ∼ q(τ) is sampled according to the marginal q(xk).

We can now interpret contrastive divergence and basic MCMC maximum-likelihood training for RBMs as
methods based on minimizing KL(q || p) using the gradients in Eq. 35. We begin by looking at the term:

E
q(τ)

[
∇w log

q(z0, x1, ..., , xk|x0)

p(x0, z0, ..., zk−1|xk)

]
(36)

With a bit of algebra – see note at the end of this section – one can show that:

log
q(z0, x1, ..., , xk|x0)

p(x0, z0, ..., zk−1|xk)
= logZxk

− logZx0
(37)

where logZxi
is the RBM marginal log-partition function for xi ∈ τ , {x0, z0, ..., xk}. I.e.:

logZxi
, log

(∑
z

exp (−E(xi, z))

)
(38)

6This distribution converges to the RBM’s marginal over xk as k → ∞, which bypasses the issues with “comple-
mentary priors” faced in [9]. We will assume the RBM Gibbs chain is ergodic, which is trivial to enforce when x and z
are both binary vectors.
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where E(xi, z) is the RBM’s energy function (parametrized by w). This quantity is minus the “free energy”
for xi in the RBM. We define the RBM energy E(x, z) as:

E(x, z) , −x>wz (39)

where x and z are binary vectors and w is an appropriately-sized matrix. Further, we can write:

logZxk
− logZx0

= F (x0)− F (xk) (40)

= −
|z|∑
j=1

log
(

1 + exp(z̃j0)
)

+

|z|∑
j=1

log
(

1 + exp(z̃jk)
)

(41)

where z̃i , x>i w (42)

and where we define z̃ji as the jth element of the “partial energy” vector z̃i in Eq. 42. Notice that Eq. 41 can
be computed directly from τ , without further sampling or approximation.

Finally, taking gradients of the terms in Eq. 40, as required to compute the gradient in Eq. 36, we get:

∇w logZxk
−∇w logZx0

=−
|z|∑
j=1

∇w log
(

1 + exp(z̃j0)
)

+

|z|∑
j=1

∇w log
(

1 + exp(z̃jk)
)

=xkσ(z̃k)> − x0σ(z̃0)> (43)

where σ(·) indicates element-wise sigmoid and z̃i are defined as in Eq. 42. Note that we assume all vectors
are columns which become rows when transposed. Eq. 43 gives a single Monte Carlo sample of the gradient
used in CD-k, i.e. contrastive divergence with k-step roll-outs. Practical applications of CD-k typically
perform partial marginalization of the expectation which gets written like:

∇w log p(x) ≈ 〈v0h
>
0 〉0 − 〈vkh>k 〉k (44)

in the contrastive divergence literature. This partial marginalization, which corresponds to the gradients in
Eq. 43, arises naturally from our formulation.

From the gradients in Eqns. 35, 36, and 44, we see that both contrastive divergence and full maximum
likelihood optimize an RBM’s parameters by performing (approximate) gradient descent on the objective
KL(q || p). For full maximum likelihood, the gradient term in Eq. 35 given by:

E
D(x)

[
E

q(τx|x)

[
∇w log q(τx|x) log

q(τx|x)

p(τx|x)

]]
(45)

disappears, because the encoder’s forward distribution q(τx|x) becomes equal to the decoder’s posterior
distribution p(τx|x) as k →∞ (see [9]). Contrastive divergence simply ignores this term, though it may be
appreciably non-zero for typical values of k. One could potentially add the gradients (or an approximation
thereof) from Eq. 45 into the standard CD-k optimization. It would be interesting to compare behavior
of the training process with and without these additional gradients. The gradients themselves have a nice
interpretation as a policy-gradient term that pushes the policy (i.e. q(τx|x)) away from regions of τx-space
that it is visiting too frequently (i.e. where log q(τx|x)

p(τx|x) is large).

End note: The equality in Eq. 37 can be found by brute force algebra on the forwards and backwards
trajectory distributions in the log-ratio log q(τ)

p(τ) . Briefly, all of the energies on edges in the overlapping
stochastic computation graphs for the forwards/backwards trajectories cancel, and all log-partition functions
on the (shared) xi/zi nodes in these computation graphs also cancel, except partition functions on the first
and last nodes. The non-cancelling partition functions leave us with log q(τ)

p(τ) = logZxk
− logZx0 .

10


	Minimizing `39`42`"613A``45`47`"603AKL(q  ||  p) – a useful thing to do
	Deriving the `39`42`"613A``45`47`"603AKL-based log-likelihood bound
	Bounding expected log-likelihood for x D

	Denoising auto-encoders and GSNs
	Reweighted Wake-Sleep and IWAEs use NIS Estimates of `39`42`"613A``45`47`"603AKL(q||p)
	Discussion
	Supplementary Material
	Additional Material for Section 1 (General `39`42`"613A``45`47`"603AKL bounds)
	Additional Material for Section 2 (DAEs and GSNs)
	Additional Material for Section 3 (NIS and IWAEs)
	A Discussion of Contrastive Divergence and RBMs


