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Abstract

We introduce incremental variational inference, which generalizes incremental
EM and provides an alternative to stochastic variational inference. It also natu-
rally extends to the distributed setting. We apply incremental variational infer-
ence to LDA and show that there is a benefit to do multiple passes over the data
in the large-scale setting. Incremental inference does not require to set a learning
rate, converges faster to a local optimum of the variational bound and enjoys the
attractive property of monotonically increasing it like its batch counterpart.

1 Introduction

Approximate Bayesian inference has become mainstream in machine learning [1, 2] and enjoyed re-
gained interest in the statistics [3, 4]. It constitutes an appealing alternative to Markov Chain Monte
Carlo when one is interested in probabilistic data modelling. Approximate inference techniques are
pragmatic, postulating an approximate model family and trying to find the best model within this
family by optimizing a surrogate objective [5]. They are also practical, as the code implementing
these inference algorithms is relatively easy to debug. For example, variational inference monoton-
ically increases the variational objective, providing a sanity check for correctness and convergence.

Stochastic variational inference [6] was a first attempt to scale up approximate inference to massive
data sets. It relies on stochastic optimization [7] and processes the data sequentially. Two drawbacks
of stochastic variational inference over batch variational inference are that it requires to adjust a
learning rate and does not share the attractive property of monotonically increasing the bound at
training time. Importantly, it cannot easily be mapped on distributed architectures, such as multi-
processor and grid-computing hardware. Recent attempts in this direction include [8, 9, 10].

To address these shortcomings, we introduce incremental variational inference, which generalizes
incremental EM proposed by [11]. Like stochastic variational inference, incremental variational
inference processes the data sequentially. However, it does not require to adjust the learning rate.
By maintaining a set of local statistics, it also preserves the property of monotonically increasing the
variational objective at each iteration. We propose an extension of incremental variational inference
that can be executed in a distributed environment without impacting the predictive performance.

In this note, we focus on Latent Dirichlet Allocation (LDA) [12, 13], a popular generative model
for documents. However, the approximate inference scheme that we introduce is general and it is
applicable to any latent variable model with a set of local and global variables.

Let us denote word n in document d by xnd ∈ {1, . . . , V } and its topic assignment by znd ∈
{1, . . . ,K}. The generative model of LDA is defined as follows:

znd | θd ∼ Categorical(θd), xnd | znd,{φk}Kk=1 ∼ Categorical(φznd
),

where θd ∼ Dirichlet(α01K) and φk ∼ Dirichlet(β01V ). The parameters α0 and β0 are non-
negative reals.
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2 Variational Inference for LDA

Variational inference maximizes a lower bound to the log marginal likelihood of the data by approx-
imating the true posterior by postulating a simpler distribution, which is parametrized by a set of
free parameters. In the case of LDA, the variational bound is given by

ln p(X) > 〈ln p(X,Z,Θ,Φ)〉+ H[q(Z,Θ,Φ)]

= ln p(X)− KL[q(Z,Θ,Φ)‖p(Z,Θ,Φ|X)],

where X = {xnd}n,d, Z = {znd}n,d, Θ = {θd}d and Φ = {φk}k. The notation 〈·〉 denotes an
expectation wrt q(Z,Θ,Φ), H[p] is the differential entropy and KL[q‖p] is the Kullback-Leibler di-
vergence wrt q. Maximizing this bound is equivalent to minimizing the Kullback-Leibler divergence
between the true posterior p(Z,Θ,Φ|X) and the approximate posterior q(Z,Θ,Φ). In general, this
minimization problem is still problematic, unless we further restrict the form of q(Z,Θ,Φ).

Mean field variational inference (MVI) assumes the latent variables and the parameters are indepen-
dent when conditioning on the data, that is, q(Z,Θ,Φ) =

∏
n,d q(znd)×

∏
d q(θd)×

∏
k q(φk). In

this case the lower bound is maximized when the factors are defined as follows [13]:

q(znd) = Categorical(πnd), πknd ∝ e〈ln θkd〉+〈lnφxndk〉,

q(θd) = Dirichlet(αd), αkd = α0 + 〈mkd〉,
q(φk) = Dirichlet(βk), βvk = β0 + 〈mvk〉, (1)

where mkd is the (unobserved) number of times topic k appeared in document d and mvk the (un-
observed) number of times word token v was assigned to topic k in the corpus. Hence, the special
quantities 〈mkd〉 and 〈mvk〉 are expected counts under the variational approximation. They are
respectively given by

∑
n πknd and

∑
n,d δv(xnd)πknd. The function δv(·) is Dirac’s delta at v.

MVI is a coordinate ascent method that converges to a local maximum of the variational bound [15].
Cycling through the updates in (1) ensures a monotonic increase of this bound. MVI is a batch in-
ference approach: every update of the variational parameter βvk requires updating all word-specific
proportions πnd beforehand, which is costly when the corpus is large. Stochastic variational infer-
ence (SVI) was recently proposed in the context and applied to LDA [16, 6]. The goal was to speed
up inference and to scale up LDA to very large document collections.

SVI optimizes the lower bound by stochastic approximation [7]. It maintains a set of local and
global parameters, which characterize the variational posteriors. Local variables are the indicator
variables Z and the document-topic proportions Θ, which depend respectively on the local parame-
ters {πnd}n,d and {αd}d. The global variables are topic-word proportions Φ, which depend on the
global parameters {βk}k.

This leads to the following updates (document d is being picked at random) [6]:

β
(t)
k = (1− ρt)β(t−1)

k + ρtβ̂k, β̂vk = β0 +D
∑Nd

n=1δv(xnd)πknd, (2)

where
∑
t ρt = ∞ and

∑
t ρ

2
t < ∞. Throughout this work, we will use the learning rate ρt =

(t+ τ)−κ, where κ ∈ (0.5, 1] and τ > 0.

Intuitively, the second term on the right hand side of (2) is a noisy, but unbiased estimate of the
expected number of counts appearing in (1), namely 〈mvk〉. The variational parameters associated
to the local variables (that is, πnd and αd) can be computed as in MVI. Typically, mini-batches are
used to stabilize the gradients.

3 Incremental Variational Inference for LDA

Incremental variational inference (IVI) computes updates in a similar fashion as incremental
EM [11]. Each iteration performs a partial variational E-step before performing a variational M-
step. This amounts to maintaining a set of global statistics associated to the global variables, which
are updated incrementally in the variational E-step by first subtracting the old statistics associated
to a data point (or a mini-batch) and adding back the corresponding new one. The updated global
statistics are then used in the variational M-step. Hence, IVI maintains an estimate of the global
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Algorithm 1 Incremental Variational Inference (IVI)

1: Initialize β(0)
vk randomly; set αkd = α0.

2: for t = 1, 2, · · · do
3: Sample a document d uniformly
4: repeat
5: π

(t)
knd ∝ e

〈ln θkd〉+〈lnφxndk〉

6: αkd = α0 +
∑Nd

n=1 πknd
7: until αkd and πknd converge.
8: βvk = β0 + 〈mvk〉+

∑Nd

n=1 δv(xnd)
(
π
(t)
knd − π

(t−1)
knd

)
9: end for

statistics based on the full data set, while SVI only considers a mini-batch-based estimate. IVI leads
to the following incremental update for LDA:

βvk = β0 + 〈mvk〉+
∑Nd

n=1δv(xnd)
(
π
(t)
knd − π

(t−1)
knd

)
. (3)

The updates for πnd and αd are the same as in MVI as they are associated to the local variables. IVI
does not require to have seen all the data points to make progress, but it ensures a monotonic increase
of the bound. The price we have to pay is the storage of the previous aggregated proportions over
the mini-batch. This can be costly when the number of topics K is large as the additional memory
requirements scale as a constant factor times the number of words in the corpus. IVI for LDA is
summarized in Algorithm 1.

Distributed Variational Inference for LDA The benefit of SVI and IVI in the context of large
document collections is that they make faster progress by processing documents sequentially. To
further speed up inference in IVI, we introduce synchronous distributed incremental variational
inference (D-IVI), which infers topics comparable to those inferred by IVI, but with a significant
reduction in computation time by handling multiple mini-batches in parallel. We consider one master
andN workers, each of which holds 1/N of the documents in the corpus. The workers hold the local
parameters {πnd}n,d and {αd}d. They independently carry-out partial variational E-step based on
local copies of the global parameter {βk}k and send the statistics corrections associated to their
mini-batch to the master, that is,

∑Nd

n=1 δv(xnd)
(
π
(t)
knd − π

(t−1)
knd

)
. The master collects the changes

and updates the global parameters according to (3). He then sends back the updated estimate to
the workers. In practice, there is a trade-off between the convergence speed and the amount of
communication: smaller mini-batches speed up progress, but increase the communication overhead.

4 Experiments and Results

We conduct two types of experiments. First, we benchmark IVI against MVI and SVI. Second, we
report speed-ups obtained with our distributed algorithm (D-IVI). We consider three benchmark cor-
pora: Wikipedia articles, the scientific abstracts from Arxiv repository [24] and Amazon customer
reviews (CR). The characteristics of the datasets are reported in the Suppl. Mat. We estimate the
predictive probability over the vocabulary [13]. We wish to achieve high average per-word likeli-
hood on held-out test documents. Under this metric, a higher score is better, as a better model will
assign a higher probability to the held-out words.

IVI Prediction Results We compare the performance of IVI and MVI at the point where MVI con-
verges to a solution. IVI yields the same result after processing half (Arxiv) to one tenth (Wikipedia)
of the number of documents processed by MVI. Besides, we observe that IVI gives consistently bet-
ter predictive performance than MVI and SVI when both of them converges to a solution. Finally, it
can be observed that the bound monotonically increases unlike the SVI bound.

D-IVI Convergence and Speed-up Results Computations were done on N machines for N =
{1, 5, 10, 20, 50}. The results are averaged over 5 runs with random initialization. In Figure 2 ,
we report wall clock time, speed-up and the log predictive probability. When N=5, we observe
approximately a 4.8 times speed-up for the two corpora compared to single machine execution.
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Figure 1: Per-word predictive probabilitiy for LDA as a function of the number of processed doc-
uments. We run experiments with the Wikipedia, Arxiv and Customer Review data sets. IVI con-
verges faster and to a higher value on all datasets. (K=100, α0 = 0.5 and β0 = 0.05)
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Figure 2: Left: Wall-clock time (in minutes) comparisons for D-IVI for different number of ma-
chines on Arxiv and Customer Review. Middle: Speed-up results of D-IVI for varying number of
machines with respect to single machine. Right: Log predictive probability comparisons for IVI for
different number of machines on Customer Review data set.

When N=50, we note a speed-up of approximately 33 and 22.5 respectively for CR and Arxiv. It
can be observed that the rate of convergence slows down when the number of processors increases,
since more iterations are needed to propagate the newest information to all the processors. However,
it is important to note that one iteration in real time of D-IVI is up to number of machines times faster
than one iteration of IVI, so D-IVI converges much more quickly than IVI. Figure 2–Right shows
D-IVI performance against number of documents seen so far, demonstrating that the quality of the
model learned is essentially the same for each N values. Finally, we investigated the effect of the
mini-batch size (see Table 2 in Suppl. Mat. for full detail). When the mini-batch size is small, each
update is more noisy and more iterations are needed to converge. In practice, the communication
overhead can be mitigated by adjusting the mini-batch size.

5 Discussion

The price we have to pay when using D-IVI is that we have to store the proportions {πnd} aggre-
gated over the mini-batches. The additional memory requirements scale as K times the number of
words in the corpus. In practice, the optimal number of topics is relatively small (in the hundreds),
which means that the storage overhead is acceptable when we can afford to store the raw data.1
Moreover, one should keep in mind that for other models than LDA, like for example mixture mod-
els, the additional storage requirements might be significantly lower than the raw data, which can be
high-dimensional and dense.

1We refer the interested reader to Table 3 in the Suppl. Mat. which reports the average predictive log
likelihood and time (in minutes) for different number of topics (up to 1000) for CR and Arxiv data.
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Supplementary Material

Table 1: Characteristics of data sets used in experiments.

Wikipedia Arxiv CustomerReview
Number of documents in training set 39565 782385 452944
Number of documents in test set 10000 100000 100000
Average number of words per document 260 116 151
Number of words in vocabulary 42419 141927 120043

Table 2: Log-prediction-probability (LPP) and runtime (in terms of minutes per pass) of the IVI for
different number of mini-batch sizes and number of machines (number of topics = 50).

Datasets Customer Review Arxiv
Number of Machines Number of MachinesMini-batch

Size 1 5 10 20 50 1 5 10 20 50

1000
LPP -6.33 -6.33 -6.33 -6.33 -6.33 LPP -6.42 -6.42 -6.42 -6.42 -6.42
Time 148 36 21 13 6.7 Time 285 72.3 46.2 24.7 11.8

2000
LPP -6.33 -6.33 -6.33 -6.33 -6.33 LPP -6.42 -6.42 -6.42 -6.42 -6.42
Time 145 32.5 18 11 5.9 Time 263 65 41 23.7 11.3

5000
LPP -6.31 -6.31 -6.31 -6.31 -6.31 LPP -6.40 -6.40 -6.40 -6.40 -6.40
Time 140 30 16.5 9.35 4.2 Time 250 60 38 23 11

MVI (full batch)
LPP -6.41 - - - - LPP -6.48 - - - -
Time 127 Time 240

Table 3: Log-prediction-probability (LPP) and runtime (in terms of minutes per iteration) of the IVI
for different number of topics and number of processors (mini-batch size = 2000).

Datasets Customer Review Arxiv
Number of Machines Number of MachinesNumber of

Topics 1 5 10 20 50 1 5 10 20 50

25
LPP -6.46 -6.46 -6.46 -6.46 -6.46 LPP -6.57 -6.57 -6.57 -6.57 -6.57
Time 138 31.6 16.7 10.8 5.3 Time 224 61 37 21.6 10.1

50
LPP -6.33 -6.33 -6.33 -6.33 -6.33 LPP -6.42 -6.42 -6.42 -6.42 -6.42
Time 145 32.5 18 11 5.9 Time 263 65 41 23.7 11.3

100
LPP -6.29 -6.29 -6.29 -6.29 -6.29 LPP -6.33 -6.33 -6.33 -6.33 -6.33
Time 148 33.2 18.6 11.5 6.1 Time 268 68 43 24.5 11.7

200
LPP -6.49 -6.49 -6.49 -6.49 -6.49 LPP -6.46 -6.46 -6.46 -6.46 -6.46
Time 159 35.4 19.5 11.9 6.3 Time 297 73.7 46.2 26.8 12.8

1000
LPP -6.84 -6.84 -6.84 -6.84 -6.84 LPP -6.97 -6.97 -6.97 -6.97 -6.97
Time 167 37.3 21.2 12.4 6.7 Time 306 78 49 28.2 13.4
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