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Abstract

We present a variational inference method defined through gradient ascent on the
likelihood function. This method can be used to improve existing posterior ap-
proximations or as part of a recognition network in variational autoencoders. De-
spite its simplicity, it proves to be competitive on standard benchmarks.

1 Introduction

Computing posterior distributions is at the core of many problems in machine learning, but is gener-
ally intractable. Variational inference casts this problem as an optimization: given a class of tractable
probability distributions, we find the one closest to the true posterior by optimizing a lower bound
on the marginal likelihood.

We propose a simple method to do variational inference or augment an existing variational method.
Starting from an initial approximate distribution q(z), we implictly define an improved distribution
by updating samples q(z) in the direction of the gradient of the target distribution p(x, z). Our main
contribution in this paper is augmenting inference networks with gradient ascent as well as Langevin
dynamics.

2 Background

In variational inference, given a family of distributions qφ(z|x) and a true, but intractable posterior
p(z|x), we wish to find the qφ(z|x) that minimizes the KL-divergence to the true posterior. There
has been a renewed interest in variational methods recently and in particular a promising class of
variational distributions have emerged. In this family of work, we parameterize qφ as a series of
transition operators applied to an initial distribution. In particular, we let qφ = Tφn

◦· · ·◦Tφ1
◦qφ0

(z),
where n is a fixed number of steps. Two examples of such methods are [4] and [5].

In [4], the operator Tφi
is a step of a sampler or a quasi-sampler (eg, Hamiltonian Monte Carlo or

Metropolis Hasting), and the authors give a general framework to optimize the distributions defined
by this family with variational inference. In particular they demonstrate the efficacy of optimizing a
form of modified Hamiltonian Monte Carlo without an accept-reject step. In these methods is that
for one must learn a reverse network for each step of the transition operator to compute estimate the
change in entropy. In this way, one can see this as learning variational inference within variational
inference.

In [5], the transition operator Tφi
is a step of Normalizing Flow which is a learnable rank one invert-

ible transformation, which when applied in a sequence, can model arbitrarily complex distributions.

In our case, the transition operator is a step of gradient ascent on the likelihood p(x, z) with respect
to z. Furthermore, the number of steps of our transition are determined at random by a policy.

The algorithmic method presented in this work is adapted from [3]. In [3], gradient descent with
early stopping was interpreted as implicitly performing variational inference by considering the
gradient step as a transition operator. The Jacobian of this operator was used to construct an estimate
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of the evidence lower bound. They then compared this bound to the cross-validation error when
optimizing neural networks on classification and regression problems.

In this paper, we are interested in using gradient descent for variational inference in the context of
variational autoencoders, where gradient descent is performed as part of the inference procedure.
The parameters of this inference procedure (such as step sizes) can then be optimized as part of
an outer loop to increase the evidence lower bound. In this context, it can be compared against
other iterative recognition networks, such as Hamiltonian Variational Inference [4], or Normalizing
Flows [5].

2.1 Variational Autoencoders

Our experiments consist of augmenting variational autoencoders. [1] Variational autoencoders spec-
ify a generative model, and a recognition (encoder) network. Given a dataset X , we model it with
latent variables Z ∼ N(0, I) as follows. We first sample Zi ∼ N(0, I), then sample Xi ∼ Pθ(·|Z).
In addition, given a datapoint Xi, the output of the encoder network gives Qφ(·|Xi) that approx-
imates Pθ(Z|Xi). We optimize the variational autoencoder by maximizing the variational lower
bound Lθ,φ defined by Pθ and Qφ.

3 Variational Inference using Gradient Ascent

The problem we are interested in solving is approximating a posterior distribution p(z|x) by starting
with a high entropy distribution q0(z) and doing incomplete gradient ascent on p(z, x) with respect
to z. Observe that if we took gradient ascent to completion, we would get degenerate solutions
to local minima of p(z, x). Given an initial distribution q0(z) we can view gradient descent as
a transition operator making repeated modifications to the distribution, ie zt+1 = T (zt) where
T (z) = z − α∇z log p(x, z), creating distributions q0, q1, . . . , qn.

Recall that ifH is the entropy function, then

log p(x) ≥ H[q(z|x)] + Eq(z|x) log p(x, z) := L[q] (1)

If we wish to compute L[qt], or an unbiased estimate, L̃[qt], then we need to estimate both the likeli-
hood term and the entropy term. We can exactly sample from qt by simply running the optimizer for
t steps starting from a random initialization, and we can use samples z1, . . . , zn to form a Monte-
Carlo estimate of the likelihood Eqt(z|x) log p(x, z). For the entropy, following [3], we observe that
H[qt+1]−H[qt] = Eqt(z|x) log |J(zt)| where J is the Jacobian induced by taking the gradient step.
Consequently, we can write L[qt] ≈ log p(zt, x) +

∑T
t=0 log |J(zt)|+H[q0].

For gradient ascent in particular, we have zt+1 = zt + α∇z log p(x, z) and consequently, if Ht is
the Hessian of log p(x, zt) with respect to z, thenH[qt+1]−H[qt] = log |I − αHt|

3.1 Estimating the Jacobian in high dimensions

Computing the log determinant is impractical for large-scale problems since it requires an O(D3)
determinant computation. Fortunately, we can make a good approximation using Hessian-vector
products, which can be performed in time proportional to evaluation of the gradient using reverse-
mode differentiation.

In particular, [3] gives a local lowerbound for the log deteriminant:

log |I − αH| ≥ −αTr(H)− α2Tr(HH)

and show that one can compute an unbiased estimate of the lowerbound in linear time using hessian
vector products. However, this lowerbound only holds for αρ(H) ≤ .68 where ρ is the spectral
radius of H . Consequently, we optimize our variational lowerbound using the lowerbound, but for
fairness we evaluate the lowerbound using the exact log determinant. Additionally, we could use the
algorithm outlined in [7]. This allows us to compute log-determinants in randomized linear time.
For general non-singular matrices, they have an additive bound with high probability. However, for
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Algorithm 1 Gradient Ascent with Entropy Estimates, following [3]
1: input: Weight initialization scale σ0, step size α, twice-differentiable negative log-likelihood
L(Z)

2: initialize Z0 ∼ N(σ0, ID)
3: initializeH0 = D

2 (1 + log 2π) +D log σ0
4: for t = 1 to T do
5: Ht = Ht−1 + log |I − αHt−1| . Update entropy
6: Zt = Zt−1 + α∇L(Zt) . Update parameters
7: end for
8: output sample ZT , entropy estimateHT

matrices with largest singular values less than one, they provide a multiplicative bound. Note that
gradient ascent will not converge if ‖I − αH‖2 ≥ 1 and with sufficiently small stepsizes α we will
have that ‖I − αH‖2 < 1.

If Hessian-vector products are used when estimating the entropy, then computing gradients with
respect to hyperparameters in the outer loop will require third-order gradient information.

3.2 Optimizing the lower bound

We optimize the above procedure by setting a fixed number of of gradient steps, then optimizing
the lowerbound of variational autoencoder L[qn] in an end to end fashion (including the stepsize
hyperparameter).

3.3 Extension to Langevin Dynamics

Instead of just doing gradient descent down p(z, x), we can also augment our network with Langevin
Dynamics, which involves alternating between taking gradient steps and adding noise. For the
gradient steps, we can use the methods mentioned above and for the noise steps, we can use the
entropy power inequality. The entropy power inequality states that given two random variables X
and Y , then

H(X + Y ) ≥ 1

2
D log(e2H(X)/D + e2H(Y )/D)

Therefore the entropy of the distribution after adding noise is bounded below by:

H(Z + ε) ≥ 1

2
D log(e2H(Z)/D + e2H(ε)/D)

4 Experiments

Here we demonstrate the efficacy of variational inference using gradient descent.

4.1 Augmenting Inference Networks with GF and Langevin Dynamics

Here we show how we can improve an inference network with variational gradient ascent. We
train a variational autoencoder where the encoder and decoder are two fully connected MLPs each
having two hidden layers containing 300 nodes with a 20 dimensional latent space. Explicitly,
qφ(z|x) = N(µφ(x), σφ(x)) where µφ, σφ are neural networks and σφ is the standard deviations of
a diagonal Gaussian. Additionally, pθ(x|z)ij = Bern(ρθ(Z)ij), where ρθ is a matrix of probabilities
defined by a neural network. We refer to this as a canonical variational autoencoder. In addition
to a canonical variational autoencoder, we compare to a variational autoencoder augmented with
normalizing flow, which has achieved results competitive with state of the art. [5] We compare three
methods. The first is normalizing flow with 5-80, the second is a variational autoencoder augmented
with 1-3 steps of gradient ascent, and finally, a variational autoencoder augmented with 1-2 steps of
Langevin dynamics. We train on MNIST with minibatches of size 100 and optimize using ADAM
[6]. It is also worth noting that the need to compute ∇z log pθ(x, z) in the gradient methods makes
this slower per iteration than Normalizing Flows.
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Figure 1: Normalizing, Gradient, and Langevin Flow

Furthermore, we have also trained GF-1 with latent dimensions equal to 40 and batch size equal to
1000. After 7000 iterations the variational lowerbound on the test set for this method was -79.73,
the lowest we’ve seen in the literature.

5 Conclusion and Future Directions

We introduced a variational inference method based on taking gradient ascent steps on the likeli-
hood and showed an unbiased way to estimate its variational lower bound. This results in a simple
extension to inference networks that yields promising results.

This method could be extended as in [3] by performing non-linear warping to gradients, to better
preserve entropy by reducing step-sizes when gradients are small, with the expense of having an
extra hyperparameter.
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